Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 126(6): 1630-1, 2004 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-14871083

RESUMO

Numerous dendrimers incorporating metal ions or clusters have received much attention as catalytic and drug delivery materials. We expanded the variety of metal ions that complex with DPA through a radial stepwise complexation to create novel organic-inorganic hybrid materials. As one of the most common and significant iron ions, Fe3+ was used. It was confirmed that iron ions, FeCl3, are coordinated to the imine groups of a spherical phenylazomethine dendrimer (DPA) in a stepwise radial fashion, which should make it possible to control the number and location of the Fe3+ ions incorporated into the dendrimers. Iron possesses very interesting properties such as magnetism, redox chemistry, and catalysis and is also one of the essential elements of our body. Here, we show the first successful attempt to control the biomimetic switching of iron ions' release/encapsulation in the dendrimer driven by their redox response of the Fe2+/Fe3+ couple, which might find uses as a drug delivery system.


Assuntos
Compostos Férricos/química , Ferritinas/química , Compostos Ferrosos/química , Compostos Azo/química , Materiais Biomiméticos/química , Preparações de Ação Retardada , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Oxirredução , Polímeros/química , Espectrofotometria Ultravioleta
2.
J Am Chem Soc ; 125(33): 9988-97, 2003 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-12914462

RESUMO

The fourth generation of a dendritic polyphenylazomethine (DPA G4) has 2, 4, 8, and 16 imine groups in the first, second, third, and fourth shells, respectively (total, 30 imine groups). DPA G4 can trap 30 equiv of SnCl(2) molecules, because the imine group is complexed with SnCl(2) at a ratio of 1:1. During addition of 30 equiv of SnCl(2) to DPA G4, four shifts in the isosbestic point were observed in the UV-vis spectra, and the amount of SnCl(2) added in each step is in agreement with the number of imine groups in each shell of DPA G4. This result shows that the complexation of the imine groups in DPA G4 with SnCl(2) occurs stepwise in the order of the first, second, third, and fourth shells. The unique stepwise complexation was also observed in DPA G2 and G3 as two and three shifts of the isosbestic point, respectively. The stepwise complexation was supported by TEM, NMR, and a novel shell-selective reduction (SSR) method for imines. An expansion in the molecular size of DPA G4 by the complexation was revealed by molecular modeling and TEM measurements. The stepwise complexation is caused by the different basicity of the imine groups between the shells, which was supported by the chemical shifts of the peaks attributed to the imine carbons in the (13)C NMR spectra. The gradients in the basicity were controlled by the introduction of electron-withdrawing or -releasing groups to the core of the dendrimers; the core imines were complexed last in DPAs having a 2,3,5,6-tetrafluoro or 2,5-dichlorophenyl core due to the low basicity of the core imines. The different complexation pattern was also clearly confirmed by the SSR method.

3.
Nature ; 415(6871): 509-11, 2002 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-11823855

RESUMO

Dendrimers are highly branched organic macromolecules with successive layers or 'generations' of branch units surrounding a central core. Organic-inorganic hybrid versions have also been produced, by trapping metal ions or metal clusters within the voids of the dendrimers. The unusual, tree-like topology endows these nanometre-sized macromolecules with a gradient in branch density from the interior to the exterior, which can give rise to an energy gradient that directs the transfer of charge and energy from the dendrimer periphery to its core. Here we show that tin ions, Sn(2+), complex to the imine groups of a spherical polyphenylazomethine dendrimer in a stepwise fashion. This behaviour reflects a gradient in the electron density associated with the imine groups, with complexation in a more peripheral generation proceeding only after complexation in generations closer to the core has been completed. By attaching an electron-withdrawing group to the dendrimer core, we are able to change the complexation pattern, so that the core imines are complexed last. By further extending this strategy, it should be possible to control the number and location of metal ions incorporated into dendrimer structures, which might find uses as tailored catalysts or building blocks for advanced materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...