Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 72: 273-80, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24713462

RESUMO

KCNQ1 encodes the α subunit of the voltage-gated channel that mediates the cardiac slow delayed rectifier K(+) current (IKs). Here, we report a KCNQ1 allele encoding an A590T mutation [KCNQ1(A590T)] found in a 39-year-old female with a mild QT prolongation. A590 is located in the C-terminal α helical region of KCNQ1 that mediates subunit tetramerization, membrane trafficking, and interaction with Yotiao. This interaction is known to be required for the proper modulation of IKs by cAMP. Since previous studies reported that mutations in the vicinity of A590 impair IKs channel surface expression and function, we examined whether and how the A590T mutation affects the IKs channel. Electrophysiological measurements in HEK-293T cells showed that the A590T mutation caused a reduction in IKs density and a right-shift of the current-voltage relation of channel activation. Immunocytochemical and immunoblot analyses showed the reduced cell surface expression of KCNQ1(A590T) subunit and its rescue by coexpression of the wild-type KCNQ1 [KCNQ1(WT)] subunit. Moreover, KCNQ1(A590T) subunit interacted with Yotiao and had a cAMP-responsiveness comparable to that of KCNQ1(WT) subunit. These findings indicate that the A590 of KCNQ1 subunit plays important roles in the maintenance of channel surface expression and function via a novel mechanism independent of interaction with Yotiao.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas do Citoesqueleto/metabolismo , Canal de Potássio KCNQ1/metabolismo , Síndrome do QT Longo/metabolismo , Mutação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Potenciais de Ação , Adulto , Sequência de Aminoácidos , AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/genética , Feminino , Expressão Gênica , Células HEK293 , Humanos , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/fisiopatologia , Dados de Sequência Molecular , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Transporte Proteico , Alinhamento de Sequência
2.
Yakugaku Zasshi ; 134(3): 439-45, 2014.
Artigo em Japonês | MEDLINE | ID: mdl-24304601

RESUMO

The cerebellar cortex, the brain region responsible for motor coordination and learning expresses a high density of B-type γ-aminobutyric acid receptor (GABAbR). Previous in vitro and in situ studies indicated that cerebellar GABAbR may mediate multiple forms of inhibitory and excitatory modulation of cerebellar circuits. Nevertheless, the in vivo influence of cerebellar GABAbR activation is unclear. As the first step in addressing this issue, we examined how pharmacological activation of cerebellar GABAbR modulates optokinetic reflex (OKR), an involuntary cerebellum-dependent eye movement for stabilizing the retinal image against the drift of the visual scene. We injected baclofen, a GABAbR-selective agonist, or control saline into the cerebellar flocculi of adult mice and then performed 1-h OKR measurement sessions on two consecutive days. In the day 1 session, the baclofen (5 nM)-injected mice and control mice showed similar initial OKR gains and similar training-induced increases in the OKR gain (OKR adaptation). This result suggests that GABAbR activation does not affect cerebellar computation for executing OKR and formation of short-term memory for OKR adaptation. At the beginning of the day 2 session, the baclofen (5 nM or 50 µM)-injected mice showed an OKR gain higher than that achieved in the day 1 session while the control mice did not. This result suggests that GABAbR activation may facilitate the formation of OKR adaptation-related long-term memory. These findings provide a new insight into the functional architecture of the cerebellar circuits and indicate GABAbR to be a new target of pharmacological therapy against diseases with cerebellar dysfunction.


Assuntos
Adaptação Fisiológica , Cerebelo/metabolismo , Movimentos Oculares , Receptores de GABA-B/metabolismo , Animais , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Biochem Biophys Res Commun ; 440(2): 283-8, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24070608

RESUMO

A mutation of KCNQ1 gene encoding the alpha subunit of the channel mediating the slow delayed rectifier K(+) current in cardiomyocytes may cause severe arrhythmic disorders. We identified KCNQ1(Y461X), a novel mutant gene encoding KCNQ1 subunit whose C-terminal domain is truncated at tyrosine 461 from a man with a mild QT interval prolongation. We made whole-cell voltage-clamp recordings from HEK-293T cells transfected with either of wild-type KCNQ1 [KCNQ1(WT)], KCNQ1(Y461X), or their mixture plus KCNE1 auxiliary subunit gene. The KCNQ1(Y461X)-transfected cells showed no delayed rectifying current. The cells transfected with both KCNQ1(WT) and KCNQ1(Y461X) showed the delayed rectifying current that is thought to be mediated largely by homomeric channel consisting of KCNQ1(WT) subunit because its voltage-dependence of activation, activation rate, and deactivation rate were similar to the current in the KCNQ1(WT)-transfected cells. The immunoblots of HEK-293T cell-derived lysates showed that KCNQ1(Y461X) subunit cannot form channel tetramers by itself or with KCNQ1(WT) subunit. Moreover, immunocytochemical analysis in HEK-293T cells showed that the surface expression level of KCNQ1(Y461X) subunit was very low with or without KCNQ1(WT) subunit. These findings suggest that the massive loss of the C-terminal domain of KCNQ1 subunit impairs the assembly, trafficking, and function of the mutant subunit-containing channels, whereas the mutant subunit does not interfere with the functional expression of the homomeric wild-type channel. Therefore, the homozygous but not heterozygous inheritance of KCNQ1(Y461X) might cause major arrhythmic disorders. This study provides a new insight into the structure-function relation of KCNQ1 channel and treatments of cardiac channelopathies.


Assuntos
Canal de Potássio KCNQ1/genética , Adulto , Substituição de Aminoácidos , Células HEK293 , Humanos , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/fisiologia , Síndrome do QT Longo/genética , Masculino , Subunidades Proteicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...