Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exploration (Beijing) ; 4(2): 20220110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38855615

RESUMO

Artificial nanofluidic networks are emerging systems for blue energy conversion that leverages surface charge-derived permselectivity to induce voltage from diffusive ion transport under salinity difference. Here the pivotal significance of electrostatic inter-channel couplings in multi-nanopore membranes, which impose constraints on porosity and subsequently influence the generation of large osmotic power outputs, is illustrated. Constructive interference is observed between two 20 nm nanopores of 30 nm spacing that renders enhanced permselectivity to osmotic power output via the recovered electroneutrality. On contrary, the interference is revealed as destructive in two-dimensional arrays causing significant deteriorations of the ion selectivity even for the nanopores sparsely distributed at an order of magnitude larger spacing than the Dukhin length. Most importantly, a scaling law is provided for deducing the maximal membrane area and porosity to avoid the selectivity loss via the inter-pore electrostatic coupling. As the electric crosstalk is inevitable in any fluidic network, the present findings can be a useful guide to design nanoporous membranes for scalable osmotic power generations.

2.
ACS Nano ; 18(24): 15695-15704, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38836590

RESUMO

Using viral vectors as gene delivery vehicles for gene therapy necessitates their quality control. Here, we report on nanopore sensing for nondestructively inspecting genomes inside the nanoscale cargoes at the single-molecule level. Using ionic current measurements, we motion-tracked the adeno-associated virus (AAV) vectors as they translocated through a solid-state nanopore. Considering the varying contributions of the electrophoretic forces from the negatively charged internal polynucleotides of different lengths, the nanocargoes carrying longer DNA moved more slowly in the nanochannel. Moreover, ion blockage characteristics revealed their larger volume by up to approximately 3600 nm3 in proportion to the length of single-stranded DNA packaged inside, thereby allowing electrical discriminations of AAV vectors by the gene-derived physical features. The present findings can be a promising tool for the enhanced quality control of AAV products by enabling the screening of empty and intermediate vectors at the single-particle level.


Assuntos
Dependovirus , Vetores Genéticos , Nanoporos , Dependovirus/genética , Vetores Genéticos/química , DNA de Cadeia Simples/química , Humanos
3.
Small Methods ; : e2301523, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725330

RESUMO

Slowing down translocation dynamics is a crucial challenge in nanopore sensing of small molecules and particles. Here, it is reported on nanoparticle motion-mediated local viscosity enhancement of water-organic mixtures in a nanofluidic channel that enables slow translocation speed, enhanced capture efficiency, and improved signal-to-noise ratio by transmembrane voltage control. It is found that higher detection rates of nanoparticles under larger electrophoretic voltage in the highly viscous solvents. Meanwhile, the strongly pulled particles distort the liquid in the pore at high shear rates over 103 s-1 which leads to a counterintuitive phenomenon of slower translocation speed under higher voltage via the induced dilatant viscosity behavior. This mechanism is demonstrated as feasible with a variety of organic molecules, including glycerol, xanthan gum, and polyethylene glycol. The present findings can be useful in resistive pulse analyses of nanoscale objects such as viruses and proteins by allowing a simple and effective way for translocation slowdown, improved detection throughput, and enhanced signal-to-noise ratio.

4.
ACS Nano ; 18(23): 15046-15054, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38804145

RESUMO

Nanofluidic channels in a membrane represent a promising avenue for harnessing blue energy from salinity gradients, relying on permselectivity as a pivotal characteristic crucial for inducing electricity through diffusive ion transport. Surface charge emerges as a central player in the osmotic energy conversion process, emphasizing the critical significance of a judicious selection of membrane materials to achieve optimal ion permeability and selectivity within specific channel dimensions. Alternatively, here we report a field-effect approach for in situ manipulation of the ion selectivity in a nanopore. Application of voltage to a surround-gate electrode allows precise adjustment of the surface charge density at the pore wall. Leveraging the gating control, we demonstrate permselectivity turnover to enhanced cation selective transport in multipore membranes, resulting in a 6-fold increase in the energy conversion efficiency with a power density of 15 W/m2 under a salinity gradient. These findings not only advance our fundamental understanding of ion transport in nanochannels but also provide a scalable and efficient strategy for nanoporous membrane osmotic power generation.

5.
STAR Protoc ; 4(2): 102227, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37086413

RESUMO

Nanopore is an emerging energy-harvesting device that can create electricity directly from salt solutions. Here, we present a protocol for the preparation and structure optimization of solid-state multipore osmotic power generators. We describe steps for sculpting multiple pores at well-defined positions in a thin SiNx membrane using electron-beam lithography. We also detail an imprinting technique to form polydimethylsiloxane blocks with fluidic channels bonded to the multipore membrane. This approach facilitates repeated liquid-exchange processes involved in ionic current measurements. For complete details on the use and execution of this protocol, please refer to Tsutsui et al.1.

6.
ACS Appl Mater Interfaces ; 15(4): 6123-6132, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661232

RESUMO

Using functional nanofluidic devices to manipulate ion transport allows us to explore the nanoscale development of blue energy harvesters and iontronic building blocks. Herein, we report on a method to alter the nonlinear ionic current through a pore by partial dielectric coatings. A variety of dielectric materials are examined on both the inner and outer surfaces of the channel with four different patterns of coated or uncoated surfaces. Through controlling the specific part of the surface charge, the pore can behave like a resistor, diode, and bipolar junction transistor. We use numerical simulations to find out the reason for the asymmetric ion transport in the pore and illustrate the relationship between specifically charged surfaces and electroosmotic flow. These findings help understand the role of the corresponding surface composition in ion transport, which provides a direct approach to modify the electroosmotic-flow-driven ionic current rectification in the channel-based device via dielectric coatings.

7.
Small Methods ; 6(11): e2200761, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36196624

RESUMO

Ionic signal amplification is a key challenge for single-molecule analyses by solid-state nanopore sensing. Here, a permittivity gradient approach for amplifying ionic blockade characteristics of DNA in a nanofluidic channel is reported. The transmembrane ionic current response is found to change substantially through modifying the liquid permittivity at one side of a pore with an organic solvent. Imposing positive liquid permittivity gradients with respect to the direction of DNA electrophoresis, this study observes the resistive ionic signals to become larger due to the varying contributions of molecular counterions. On the contrary, negative gradients render adverse effects causing conductive ionic current pulses upon polynucleotide translocations. Most importantly, both the positive and negative gradients are demonstrated to be capable of amplifying the ionic signals by an order of magnitude with a 1.3-fold difference in the transmembrane liquid dielectric constants. This phenomenon allows a novel way to enhance the single-molecule sensitivity of nanopore sensing that may be useful in analyzing secondary structures and genome sequence of DNA by ionic current measurements.


Assuntos
Nanoporos , DNA/análise , Íons , Nanotecnologia , Transporte de Íons
8.
iScience ; 25(10): 105073, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36147952

RESUMO

Stable and fast-responding ionic current is a prerequisite for reliable measurements of small objects with a nanopore. Here, we report on the interference of ion diffusion kinetics at liquid-electrode interfaces in nanopore sensing. Using platinum as electrodes, we observed a slow and large decrease in the ionic current through a nanopore in a salt solution suggestive of the considerable influence of the growing impedance at the liquid-metal interfaces via Cottrell diffusion. When detecting nanoparticles, the resistive pulses became weaker following the steady increase in the resistance at the partially polarizable electrodes. The interfacial impedance was also demonstrated to couple with the nanopore chip capacitance thereby degraded the temporal resolution of the ionic current measurements in a time-varying manner. These findings can be useful for choosing the suitable size and material of electrodes for the single-particle and -molecule analyses by ionic current.

9.
J Phys Chem Lett ; 13(27): 6359-6366, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35796409

RESUMO

A molecule-scale diode is an essential component for the concept of molecular electronics. Here we report on heterogeneous contact-mediated rectifying behavior in single-molecule junctions. We performed massive current versus voltage characteristics measurements of metal-molecule-metal structures under stretching by a mechanical break junction method. In-situ deformations of the molecular bridges were revealed to induce stochastic switching of the rectifying direction to varying rectification ratio derived from the induced asymmetry in the contact motifs at the molecule termini. Aromatic molecules were found to enable stronger rectifications via the more pronounced Fermi pinning effect to shift the molecular orbital levels by the applied voltage. Dissimilar anchoring groups also served to stabilize the single-molecule diode properties by bestowing a chemically defined difference in the electronic coupling strengths at the electrode-molecule links. The present findings provide a guide to design diodes with the smallest and simplest structures.

10.
Sci Adv ; 8(6): eabl7002, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148181

RESUMO

Energy dissipation in solid-state nanopores is an important issue for their use as a sensor for detecting and analyzing individual objects in electrolyte solution by ionic current measurements. Here, we report on evaluations of heating via diffusive ion transport in the nanoscale conduits using thermocouple-embedded SiNx pores. We found a linear rise in the nanopore temperature with the input electrical power suggestive of steady-state ionic heat dissipation in the confined nanospace. Meanwhile, the heating efficiency was elucidated to become higher in a smaller pore due to a rapid decrease in the through-water thermal conduction for cooling the fluidic channel. The scaling law suggested nonnegligible influence of the heating to raise the temperature of single-nanometer two-dimensional nanopores by a few kelvins under the standard cross-membrane voltage and ionic strength conditions. The present findings may be useful in advancing our understanding of ion and mass transport phenomena in nanopores.

11.
Small Methods ; 5(7): e2100191, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34928002

RESUMO

Noise is ubiquitous in real space that hinders detection of minute yet important signals in electrical sensors. Here, the authors report on a deep learning approach for denoising ionic current in resistive pulse sensing. Electrophoretically-driven translocation motions of single-nanoparticles in a nano-corrugated nanopore are detected. The noise is reduced by a convolutional auto-encoding neural network, designed to iteratively compare and minimize differences between a pair of waveforms via a gradient descent optimization. This denoising in a high-dimensional feature space is demonstrated to allow detection of the corrugation-derived wavy signals that cannot be identified in the raw curves nor after digital processing in frequency domains under the given noise floor, thereby enabled in-situ tracking to electrokinetic analysis of fast-moving single- and double-nanoparticles. The ability of the unlabeled learning to remove noise without compromising temporal resolution may be useful in solid-state nanopore sensing of protein structure and polynucleotide sequence.


Assuntos
Aprendizado Profundo , Nanopartículas , Nanoporos
12.
Small Methods ; 5(9): e2100542, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34928053

RESUMO

Amplification-free genome analysis can revolutionize biology and medicine by uncovering genetic variations among individuals. Here, the authors report on a 3D-integrated nanopore for electrolysis to in situ detection of single-molecule DNA in a cell by ionic current measurements. It consists of a SiO2 multipore sheet and a SiNx nanopore membrane stacked vertically on a Si wafer. Single cell lysis is demonstrated by 106  V m-1 -level electrostatic field focused at the multinanopore. The intracellular molecules are then directly detected as they move through a sensing zone, wherein the authors find telegraphic current signatures reflecting folding degrees of freedom of the millimeter-long polynucleotides threaded through the SiNx nanopore. The present device concept may enable on-chip single-molecule sequencing to multi-omics analyses at a single-cell level.


Assuntos
DNA/análise , Imagem Individual de Molécula/instrumentação , Técnicas Biossensoriais , Humanos , Nanoporos , Dióxido de Silício/química , Imagem Individual de Molécula/métodos , Eletricidade Estática
13.
Anal Chem ; 93(49): 16700-16708, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34860500

RESUMO

Tuning capture rates and translocation time of analytes in solid-state nanopores are one of the major challenges for their use in detecting and analyzing individual nanoscale objects via ionic current measurements. Here, we report on the use of salt gradient for the fine control of capture-to-translocation dynamics in 300 nm sized SiNx nanopores. We demonstrated a decrease up to a factor of 3 in the electrophoretic speed of nanoparticles at the pore exit along with an over 3-fold increase in particle detection efficiency by subjecting a 5-fold ion concentration difference across the dielectric membrane. The improvement in the sensor performance was elucidated to be a result of the salt-gradient-mediated electric field and electroosmotic flow asymmetry at nanochannel orifices. The present findings can be used to enhance nanopore sensing capability for detecting biomolecules such as amyloids and proteins.


Assuntos
Nanoporos , Eletricidade , Eletro-Osmose , Cloreto de Sódio
14.
Lab Chip ; 21(16): 3076-3085, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34195745

RESUMO

Capture-to-translocation dynamics control is an important issue for single-particle and -molecule analyses by resistive pulse waveforms. Here, we report on regulated motions for accurate zeta-potential assessments of single nanoscale objects passing through an octet-nanochannel. We observed ionic spike signals consisting of eight consecutive sub-pulses signifying the ion blockage at the eight sensing zones in series upon electrophoretic translocation of individual nanoparticles. We find an exponential decrease to saturation of the channel-to-channel translocation duration as a nanobead moves forward, reflecting the more restricted radial motion degrees of freedom via inertial effects at the downstream side of the octet channel. This finding enabled a protocol for single-nanoparticle zeta potential estimation impervious to the uncertainty stemming from the stochastic nature of the translocation dynamics. The multi-channel approach presented in this study may be used as a useful tool for analyzing particles and molecules of variable sizes.


Assuntos
Nanopartículas , Eletroforese , Íons
15.
Biosensors (Basel) ; 11(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809382

RESUMO

Immunostaining has been widely used in cancer prognosis for the quantitative detection of cancer cells present in the bloodstream. However, conventional detection methods based on the target membrane protein expression exhibit the risk of missing cancer cells owing to variable protein expressions. In this study, the resistive pulse method (RPM) was employed to discriminate between cultured cancer cells (NCI-H1650) and T lymphoblastoid leukemia cells (CCRF-CEM) by measuring the ionic current response of cells flowing through a micro-space. The height and shape of a pulse signal were used for the simultaneous measurement of size, deformability, and surface charge of individual cells. An accurate discrimination of cancer cells could not be obtained using 1.0 × phosphate-buffered saline (PBS) as an electrolyte solution to compare the size measurements by a microscopic observation. However, an accurate discrimination of cancer cells with a discrimination error rate of 4.5 ± 0.5% was achieved using 0.5 × PBS containing 2.77% glucose as the electrolyte solution. The potential application of RPM for the accurate discrimination of cancer cells from leukocytes was demonstrated through the measurement of the individual cell size, deformability, and surface charge in a solution with a low electrolyte concentration.


Assuntos
Eletrólitos/análise , Proteínas de Membrana/análise , Técnicas Biossensoriais , Linhagem Celular Tumoral , Humanos , Neoplasias/diagnóstico
16.
Anal Chem ; 93(18): 7037-7044, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33908760

RESUMO

A rapid and simple cancer detection method independent of cancer type is an important technology for cancer diagnosis. Although the expression profiles of biological molecules contained in cancer cell-derived extracellular vesicles (EVs) are considered candidates for discrimination indexes to identify any cancerous cells in the body, it takes a certain amount of time to examine these expression profiles. Here, we report the shape distributions of EVs suspended in a solution and the potential of these distributions as a discrimination index to discriminate cancer cells. Distribution analysis is achieved by low-aspect-ratio nanopore devices that enable us to rapidly analyze EV shapes individually in solution, and the present results reveal a dependence of EV shape distribution on the type of cells (cultured liver, breast, and colorectal cancer cells and cultured normal breast cells) secreting EVs. The findings in this study provide realizability and experimental basis for a simple method to discriminate several types of cancerous cells based on rapid analyses of EV shape distributions.


Assuntos
Vesículas Extracelulares , Neoplasias , Linhagem Celular , Células Cultivadas , Humanos
17.
ACS Appl Mater Interfaces ; 13(8): 10632-10638, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33595287

RESUMO

The present study reports on the systematic characterization of the effectiveness of dielectric coating to tailor capture-to-translocation dynamics of single particles in solid-state pores. We covered the surface of SiNx membranes with SiO2, HfO2, Al2O3, TiO2, or ZnO, which allowed us to change the ζ-potential at the pore wall, reflecting the isoelectric points of these coating materials. Resistive pulse measurements of negatively charged polystyrene beads elucidated more facile electrophoretic capture of the particles and slower translocation motions in the channel under more negative electric potential at the oxide surface. These findings provide a guide to engineer pore wall surface for optimizing the translocation dynamics for efficient sensing of particles and molecules.

19.
ACS Appl Mater Interfaces ; 12(46): 52175-52181, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33151677

RESUMO

Understanding and control of ion transport in a fluidic channel is of crucial importance for iontronics. The present study reports on quasi-stable ionic current characteristics in a SiNx nanopore under a salinity gradient. An intriguing interplay between electro-osmotic flow and local ion density distributions in a solid-state pore is found to induce highly asymmetric ion transport to negative differential resistance behavior under a 100-fold difference in the cross-membrane salt concentrations. Meanwhile, a subtle change in the salinity gradient profile led to observations of resistive switching. This peculiar characteristic was suggested to stem from quasi-stable local ion density around the channel that can be switched between two distinct states via the electro-osmotic flow under voltage control. The present findings may be useful for neuromorphic devices based on micro- and nanofluidic channels.

20.
Sci Rep ; 10(1): 15525, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968098

RESUMO

A rapid method for screening pathogens can revolutionize health care by enabling infection control through medication before symptom. Here we report on label-free single-cell identifications of clinically-important pathogenic bacteria by using a polymer-integrated low thickness-to-diameter aspect ratio pore and machine learning-driven resistive pulse analyses. A high-spatiotemporal resolution of this electrical sensor enabled to observe galvanotactic response intrinsic to the microbes during their translocation. We demonstrated discrimination of the cellular motility via signal pattern classifications in a high-dimensional feature space. As the detection-to-decision can be completed within milliseconds, the present technique may be used for real-time screening of pathogenic bacteria for environmental and medical applications.


Assuntos
Infecções Bacterianas/diagnóstico , Técnicas Biossensoriais/métodos , Aprendizado de Máquina , Bacillus cereus/ultraestrutura , Infecções Bacterianas/microbiologia , Eletrônica , Escherichia coli/ultraestrutura , Filtros Microporos , Microscopia Eletrônica de Varredura , Pseudomonas fluorescens/ultraestrutura , Salmonella enterica/ultraestrutura , Staphylococcus aureus/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...