Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0304194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968186

RESUMO

Deficiencies in the ING4 tumor suppressor are associated with advanced stage tumors and poor patient survival in cancer. ING4 was shown to inhibit NF-kB in several cancers. As NF-kB is a key mediator of immune response, the ING4/NF-kB axis is likely to manifest in tumor-immune modulation but has not been investigated. To characterize the tumor immune microenvironment associated with ING4-deficient tumors, three approaches were employed in this study: First, tissue microarrays composed of 246 primary breast tumors including 97 ING4-deficient tumors were evaluated for the presence of selective immune markers, CD68, CD4, CD8, and PD-1, using immunohistochemical staining. Second, an immune-competent mouse model of ING4-deficient breast cancer was devised utilizing CRISPR-mediated deletion of Ing4 in a Tp53 deletion-derived mammary tumor cell line; mammary tumors were evaluated for immune markers using flow cytometry. Lastly, the METABRIC gene expression dataset was evaluated for patient survival related to the immune markers associated with Ing4-deleted tumors. The results showed that CD68, CD4, CD8, or PD-1, was not significantly associated with ING4-deficient breast tumors, indicating no enrichment of macrophages, T cells, or exhausted T cell types. In mice, Ing4-deleted mammary tumors had a growth rate comparable to Ing4-intact tumors but showed increased tumor penetrance and metastasis. Immune marker analyses of Ing4-deleted tumors revealed a significant increase in tumor-associated macrophages (Gr-1loCD11b+F4/80+) and a decrease in granzyme B-positive (GzmB+) CD4+ T cells, indicating a suppressive and/or less tumoricidal immune microenvironment. The METABRIC data analyses showed that low expression of GZMB was significantly associated with poor patient survival, as was ING4-low expression, in the basal subtype of breast cancer. Patients with GZMB-low/ING4-low tumors had the worst survival outcomes (HR = 2.80, 95% CI 1.36-5.75, p = 0.0004), supportive of the idea that the GZMB-low immune environment contributes to ING4-deficient tumor progression. Collectively, the study results demonstrate that ING4-deficient tumors harbor a microenvironment that contributes to immune evasion and metastasis.


Assuntos
Neoplasias da Mama , Proteínas de Ciclo Celular , Proteínas de Homeodomínio , Microambiente Tumoral , Proteínas Supressoras de Tumor , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/deficiência , Linhagem Celular Tumoral , Progressão da Doença , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Metástase Neoplásica , Microambiente Tumoral/imunologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/metabolismo
2.
Mol Cell Biol ; 42(2): e0038221, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34871062

RESUMO

The chemokine Cxcl10 has been associated with poor prognosis in breast cancer, but the mechanism is not well understood. Our previous study has shown that CXCL10 was repressed by the ING4 tumor suppressor, suggesting a potential inverse functional relationship. We thus investigated a role for Cxcl10 in the context of ING4 deficiencies in breast cancer. We first analyzed public gene expression data sets and found that patients with CXCL10-high/ING4-low expressing tumors had significantly reduced disease-free survival in breast cancer. In vitro, Cxcl10 induced migration of ING4-deleted breast cancer cells but not of ING4-intact cells. Using inhibitors, we found that Cxcl10-induced migration of ING4-deleted cells required Cxcr3, Egfr, and the Gßγ subunits downstream of Cxcr3 but not Gαi. Immunofluorescent imaging showed that Cxcl10 induced early transient colocalization between Cxcr3 and Egfr in both ING4-intact and ING4-deleted cells, which recurred only in ING4-deleted cells. A peptide agent that binds to the internal juxtamembrane domain of Egfr inhibited Cxcr3/Egfr colocalization and cell migration. Taken together, these results presented a novel mechanism of Cxcl10 that elicits migration of ING4-deleted cells, in part by inducing a physical or proximal association between Cxcr3 and Egfr and signaling downstream via Gßγ. These results further indicated that ING4 plays a critical role in the regulation of Cxcl10 signaling that enables breast cancer progression.


Assuntos
Proteínas de Ciclo Celular/deficiência , Quimiocina CXCL10/metabolismo , Receptores CXCR3/metabolismo , Proteínas Supressoras de Tumor/deficiência , Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL10/genética , Receptores ErbB/metabolismo , Genes Supressores de Tumor/fisiologia , Proteínas de Homeodomínio , Humanos , Receptores CXCR3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA