Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cancer Med ; 13(13): e7445, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38940430

RESUMO

INTRODUCTION: Nucleoporin 98 (NUP98) fusion proteins are recurrently found in leukemia and are associated with unfavorable clinical outcomes. They are distributed to the nucleus and contribute to leukemogenesis via aberrant transcriptional regulation. We previously identified NUP98-BPTF (NB) fusion in patients with T-cell acute lymphoblastic leukemia (T-ALL) using next-generation sequencing. The FG-repeat of NUP98 and the PHD finger and bromodomain of bromodomain PHD finger transcription factor (BPTF) are retained in the fusion. Like other NUP98 fusion proteins, NB is considered to regulate genes that are essential for leukemogenesis. However, its target genes or pathways remain unknown. MATERIALS AND METHODS: To investigate the potential oncogenic properties of the NB fusion protein, we lentivirally transduced a doxycycline-inducible NB expression vector into mouse NIH3T3 fibroblasts and human Jurkat T-ALL cells. RESULTS: NB promoted the transformation of mouse NIH3T3 fibroblasts by upregulating the proto-oncogene Pim1, which encodes a serine/threonine kinase. NB transcriptionally regulated Pim1 expression by binding to its promoter and activated MYC and mTORC1 signaling. PIM1 knockdown or pharmacological inhibition of mTORC1 signaling suppressed NB-induced NIH3T3 cell transformation. Furthermore, NB enhanced the survival of human Jurkat T-ALL cells by inactivating the pro-apoptotic protein BCL2-associated agonist of cell death (BAD). CONCLUSION: We demonstrated the pivotal role of NB in cell transformation and survival and identified PIM1as a key downstream target of NB. These findings propose a promising therapeutic strategy for patients with NB fusion-positive leukemia.


Assuntos
Transformação Celular Neoplásica , Complexo de Proteínas Formadoras de Poros Nucleares , Proteínas de Fusão Oncogênica , Proteínas Proto-Oncogênicas c-pim-1 , Animais , Humanos , Camundongos , Apoptose , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Jurkat , Células NIH 3T3 , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
2.
Cell Death Discov ; 10(1): 56, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282096

RESUMO

5' adenosine monophosphate-activated protein kinase-related kinase 5 (ARK5) is involved in mitochondrial ATP production and associated with poor prognosis of multiple myeloma (MM). However, the molecular mechanisms of ARK5 in MM remain largely unknown. This study examined the pathogenic role of ARK5 in mitochondria by using genetically modified isogenic cell clones with or without ARK5 in human myeloma cell lines, KMS-11 and Sachi, which overexpress ARK5. The biallelic knockout of ARK5 (ARK5-KO) inhibited cell proliferation, colony formation, and migration with increased apoptosis. Mitochondrial fusion was enhanced in ARK5-KO cells, unlike in ARK5 wild-type (ARK5-WT) cells, which exhibited increased mitochondrial fission. Furthermore, ARK5-KO cells demonstrated a lower phosphorylated dynamin-related protein 1 at serine 616, higher protein expression of mitofusin-1 (MFN1) and MFN2, optic atrophy 1 with a lower level of ATP, and higher levels of lactate and reactive oxygen species than ARK5-WT cells. Our findings suggest that ARK5-enhanced myeloma cells can survive associated mitochondrial fission and activity. This study first revealed the relationship between ARK5 and mitochondrial morphological dynamics. Thus, our outcomes show novel aspects of mitochondrial biology of ARK5, which can afford a more advanced treatment approach for unfavorable MM expressing ARK5.

3.
Oral Dis ; 30(2): 223-234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36799330

RESUMO

OBJECTIVE: PDZ-binding kinase (PBK) has been reported as a poor prognostic factor and is a promising molecular target for anticancer therapeutics. Here, we aimed to investigate the effect of specific PBK inhibitor OTS514 on the survival of OSCC cells. METHODS: Four OSCC cell lines (HSC-2, HSC-3, SAS, and OSC-19) were used to examine the effect of OTS514 on cell survival and apoptosis. DNA microarray analysis was conducted to investigate the effect of OTS514 on gene expression in OSCC cells. Gene set enrichment analysis was performed to identify molecular signatures related to the antiproliferative effect of OTS514. RESULTS: OTS514 decreased the cell survival of OSCC cells dose-dependently, and administration of OTS514 readily suppressed the HSC-2-derived tumor growth in immunodeficient mice. Treatment with OTS514 significantly increased the number of apoptotic cells and caspase-3/7 activity. Importantly, OTS514 suppressed the expression of E2F target genes with a marked decrease in protein levels of E2F1, a transcriptional factor. Moreover, TP53 knockdown attenuated OTS514-induced apoptosis. CONCLUSION: OTS514 suppressed the proliferation of OSCC cells by downregulating the expression of E2F target genes and induced apoptosis by mediating the p53 signaling pathway. These results highlight the clinical application of PBK inhibitors in the development of molecular-targeted therapeutics against OSCC.


Assuntos
Carcinoma de Células Escamosas , Quinases de Proteína Quinase Ativadas por Mitógeno , Neoplasias Bucais , Quinolonas , Tiofenos , Animais , Camundongos , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Apoptose , Proliferação de Células/genética
4.
FEBS J ; 291(5): 927-944, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009294

RESUMO

There has been a great deal of research on cell division and its mechanisms; however, its processes still have many unknowns. To find novel proteins that regulate cell division, we performed the screening using siRNAs and/or the expression plasmid of the target genes and identified leucine zipper protein 1 (LUZP1). Recent studies have shown that LUZP1 interacts with various proteins and stabilizes the actin cytoskeleton; however, the function of LUZP1 in mitosis is not known. In this study, we found that LUZP1 colocalized with the chromosomal passenger complex (CPC) at the centromere in metaphase and at the central spindle in anaphase and that these LUZP1 localizations were regulated by CPC activity and kinesin family member 20A (KIF20A). Mass spectrometry analysis identified that LUZP1 interacted with death-associated protein kinase 3 (DAPK3), one regulator of the cleavage furrow ingression in cytokinesis. In addition, we found that LUZP1 also interacted with myosin light chain 9 (MYL9), a substrate of DAPK3, and comprehensively inhibited MYL9 phosphorylation by DAPK3. In line with a known role for MYL9 in the actin-myosin contraction, LUZP1 suppression accelerated the constriction velocity at the division plane in our time-lapse analysis. Our study indicates that LUZP1 is a novel regulator for cytokinesis that regulates the constriction velocity of the contractile ring.


Assuntos
Citocinese , Zíper de Leucina , Citocinese/genética , Constrição , Citoesqueleto de Actina , Mitose
5.
Oncogene ; 43(6): 447-456, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38102337

RESUMO

TAL1 is one of the most frequently dysregulated genes in T-ALL and is overexpressed in about 50% of T-ALL cases. One of the molecular mechanisms of TAL1 overexpression is abnormal mutations in the upstream region of the TAL1 promoter that introduce binding motifs for the MYB transcription factor. MYB binding at this location creates a 5' TAL1 super-enhancer (SE), which leads to aberrant expression of TAL1 and is associated with unfavorable clinical outcomes. Although targeting TAL1 is considered to be an attractive therapeutic strategy for patients with T-ALL, direct inhibition of transcription factors is challenging. Here, we show that KLF4, a known tumor suppressor in leukemic cells, suppresses SE-driven TAL1 expression in T-ALL cells. Mechanistically, KLF4 downregulates MYB expression by directly binding to its promoter and inhibits the formation of 5' TAL1 SE. In addition, we found that APTO-253, a small molecule inducer of KLF4, exerts an anti-leukemic effect by targeting SE-driven TAL1 expression in T-ALL cells. Taken together, our results suggest that the induction of KLF4 is a promising strategy to control TAL1 expression and could be a novel treatment for T-ALL patients with a poor prognosis.


Assuntos
Leucemia-Linfoma de Células T do Adulto , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Elementos Facilitadores Genéticos , Fatores de Transcrição/genética , Leucemia-Linfoma de Células T do Adulto/genética
6.
PLoS One ; 18(11): e0294146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943774

RESUMO

CRISPR/Cas9 is a powerful genome editing system that has remarkably facilitated gene knockout and targeted knock-in. To accelerate the practical use of CRISPR/Cas9, however, it remains crucial to improve the efficiency, precision, and specificity of genome editing, particularly targeted knock-in, achieved with this system. To improve genome editing efficiency, researchers should first have a molecular assay that allows sensitive monitoring of genome editing events with simple procedures. In the current study, we demonstrate that genome editing events occurring in L1CAM, an X-chromosome gene encoding a cell surface protein, can be readily monitored using flow cytometry (FCM) in multiple human cell lines including neuroblastoma cell lines. The abrogation of L1CAM was efficiently achieved using Cas9 nucleases which disrupt exons encoding the L1CAM extracellular domain, and was easily detected by FCM using anti-L1CAM antibodies. Notably, L1CAM-abrogated cells could be quantified by FCM in four days after transfection with a Cas9 nuclease, which is much faster than an established assay based on the PIGA gene. In addition, the L1CAM-based assay allowed us to measure the efficiency of targeted knock-in (correction of L1CAM mutations) accomplished through different strategies, including a Cas9 nuclease-mediated method, tandem paired nicking, and prime editing. Our L1CAM-based assay using FCM enables rapid and sensitive quantification of genome editing efficiencies and will thereby help researchers improve genome editing technologies.


Assuntos
Edição de Genes , Molécula L1 de Adesão de Célula Nervosa , Humanos , Edição de Genes/métodos , Citometria de Fluxo , Sistemas CRISPR-Cas/genética , Molécula L1 de Adesão de Célula Nervosa/genética , Linhagem Celular
7.
Cell Death Discov ; 9(1): 257, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479714

RESUMO

Malignant mesothelioma (MMe) is a rare but aggressive malignancy. Although the molecular genetics of MMe is known, including BRCA1-associated protein-1 (BAP1) gene alterations, the prognosis of MMe patients remains poor. Here, we generated BAP1 knockout (BAP1-KO) human mesothelial cell clones to develop molecular-targeted therapeutics based on genetic alterations in MMe. cDNA microarray and quantitative RT-PCR (qRT-PCR) analyses revealed high expression of a calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D) gene in the BAP1-KO cells. CAMK2D was highly expressed in 70% of the human MMe tissues (56/80) and correlated with the loss of BAP1 expression, making it a potential diagnostic and therapeutic target for BAP1-deficient MMe. We screened an anticancer drugs library using BAP1-KO cells and successfully identified a CaMKII inhibitor, KN-93, which displayed a more potent and selective antiproliferative effect against BAP1-deficient cells than cisplatin or pemetrexed. KN-93 significantly suppressed the tumor growth in mice xenografted with BAP1-deficient MMe cells. This study is the first to provide a potential molecular-targeted therapeutic approach for BAP1-deficient MMe.

8.
Int J Hematol ; 118(1): 65-74, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37149540

RESUMO

Gene aberrations of B-cell regulators and growth signal components such as the JAK-STAT pathway are frequently found in B-cell acute lymphoblastic leukemia (B-ALL). EBF1 is a B-cell regulator that regulates the expression of PAX5 and co-operates with PAX5 to regulate B-cell differentiation. Here, we analyzed the function of the fusion protein of EBF1 and JAK2, EBF1-JAK2 (E-J). E-J caused constitutive activation of JAK-STAT and MAPK pathways and induced autonomous cell growth in a cytokine-dependent cell line. E-J did not affect the transcriptional activity of EBF1 but inhibited that of PAX5. Both the physical interaction of E-J with PAX5 and kinase activity of E-J were required for E-J to inhibit PAX5 function, although the detailed mechanism of inhibition remains unclear. Importantly, gene set enrichment analysis using the results of our previous RNA-seq data of 323 primary BCR-ABL1-negative ALL samples demonstrated repression of the transcriptional target genes of PAX5 in E-J-positive ALL cells, which suggests that E-J also inhibited PAX5 function in ALL cells. Our results shed new light on the mechanisms of differentiation block by kinase fusion proteins.


Assuntos
Janus Quinases , Fatores de Transcrição STAT , Humanos , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Linhagem Celular , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Transativadores/genética , Transativadores/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo
9.
Cancer Sci ; 114(1): 8-15, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36106363

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL), a genetically heterogeneous disease, is classified into different molecular subtypes that are defined by recurrent gene rearrangements, gross chromosomal abnormalities, or specific gene mutations. Cells with these genetic alterations acquire a leukemia-initiating ability and show unique expression profiles. The distribution of B-ALL molecular subtypes is greatly dependent on age, which also affects treatment responsiveness and long-term survival, partly accounting for the inferior outcome in adolescents and young adults (AYA) and (older) adults with B-ALL. Recent advances in sequencing technology, especially RNA sequencing and the application of these technologies in large B-ALL cohorts have uncovered B-ALL molecular subtypes prevalent in AYA and adults. These new insights supply more precise estimations of prognoses and targeted therapies informed by sequencing results, as well as a deeper understanding of the genetic basis of AYA/adult B-ALL. This article provides an account of these technological advances and an overview of the recent major findings of B-ALL molecular subtypes in adults.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Adulto Jovem , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Mutação , Rearranjo Gênico , Prognóstico , Linfoma de Burkitt/genética
10.
Haematologica ; 108(2): 394-408, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36005560

RESUMO

Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is an intractable disease and most cases harbor genetic alterations that activate JAK or ABL signaling. The commonest subtype of Ph-like ALL exhibits a CRLF2 gene rearrangement that brings about JAK1/2-STAT5 pathway activation. However, JAK1/2 inhibition alone is insufficient as a treatment, so combinatorial therapies targeting multiple signals are needed. To better understand the mechanisms underlying the insufficient efficacy of JAK inhibition, we explored gene expression changes upon treatment with a JAK1/2 inhibitor (ruxolitinib) and found that elevated BCL6 expression was one such mechanism. Upregulated BCL6 suppressed the expression of TP53 along with its downstream cell cycle inhibitor p21 (CDKN2A) and pro-apoptotic molecules, such as FAS, TNFRSF10B, BID, BAX, BAK, PUMA, and NOXA, conferring cells some degree of resistance to therapy. BCL6 inhibition (with FX1) alone was able to upregulate TP53 and restore the TP53 expression that ruxolitinib had diminished. In addition, ruxolitinib and FX1 concertedly downregulated MYC. As a result, FX1 treatment alone had growth-inhibitory and apoptosis- sensitizing effects, but the combination of ruxolitinib and FX1 more potently inhibited leukemia cell growth, enhanced apoptosis sensitivity, and prolonged the survival of xenografted mice. These findings provide one mechanism for the insufficiency of JAK inhibition for the treatment of CRLF2-rearranged ALL and indicate BCL6 inhibition as a potentially helpful adjunctive therapy combined with JAK inhibition.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Nitrilas , Pirimidinas , Transdução de Sinais , Proteínas Proto-Oncogênicas c-bcl-6
11.
Cancer Sci ; 114(3): 781-792, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36341510

RESUMO

CEBPA-IGH, a fusion gene of the immunoglobulin heavy-chain locus (IGH) and the CCAAT enhancer-binding protein α (C/EBPα) gene, is recurrently found in B-ALL cases and causes aberrant expression of C/EBPα, a master regulator of granulocyte differentiation, in B cells. Forced expression of C/EBPα in B cells was reported to cause loss of B-cell identity due to the inhibition of Pax5, a master regulator of B-cell differentiation; however, it is not known whether the same mechanism is applicable for B-ALL development by CEBPA-IGH. It is known that a full-length isoform of C/EBPα, p42, promotes myeloid differentiation, whereas its N-terminal truncated isoform, p30, inhibits myeloid differentiation through the inhibition of p42; however, the differential role between p42 and p30 in ALL development has not been clarified. In the present study, we examined the effect of the expression of p42 and p30 in B cells by performing RNA-seq of mRNA from LCL stably transfected with p42 or p30. Unexpectedly, suppression of PAX5 target genes was barely observed. Instead, both isoforms suppressed the target genes of MEF2 family members (MEF2s), other regulators of B-cell differentiation. Similarly, MEF2s target genes rather than PAX5 target genes were suppressed in CEBP-IGH-positive ALL (n = 8) compared with other B-ALL (n = 315). Furthermore, binding of both isoforms to MEF2s target genes and the reduction of surrounding histone acetylation were observed in ChIP-qPCR. Our data suggest that the inhibition of MEF2s by C/EBPα plays a role in the development of CEBPA-IGH-positive ALL and that both isoforms work co-operatively to achieve it.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Leucemia , Humanos , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular , Hematopoese , Isoformas de Proteínas/genética , Fatores de Transcrição MEF2/metabolismo
12.
Mol Biol Rep ; 49(7): 6241-6248, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35420385

RESUMO

BACKGROUND: Targeted knock-in assisted by the CRISPR/Cas9 system is an advanced technology with promising applications in various research fields including medical and agricultural sciences. However, improvements in the efficiency, precision, and specificity of targeted knock-in are prerequisites to facilitate the practical application of this technology. To improve the efficiency of targeted knock-in, it is necessary to have a molecular system that allows sensitive monitoring of targeted knock-in events with simple procedures. METHODS AND RESULTS: We developed an assay, named CD55 correction assay, with which to monitor CD55 gene correction accomplished by targeted knock-in. To create the reporter clones used in this assay, we initially introduced a 7.7-kb heterozygous deletion covering CD55 exons 2-5, and then incorporated a truncating mutation within exon 4 of the remaining CD55 allele in human cell lines. The resultant reporter clones that lost the CD55 protein on the cell membrane were next transfected with Cas9 constructs along with a donor plasmid carrying wild-type CD55 exon 4. The cells were subsequently stained with fluorescence-labeled CD55 antibody and analyzed by flow cytometry to detect CD55-positive cells. These procedures allow high-throughput, quantitative detection of targeted gene correction events occurring in an endogenous human gene. CONCLUSIONS: The current study demonstrated the utility of the CD55 correction assay to sensitively quantify the efficiency of targeted knock-in. When used with the PIGA correction assay, the CD55 correction assay will help accurately determine the efficiency of targeted knock-in, precluding possible experimental biases caused by cell line-specific and locus-specific factors.

13.
Blood ; 139(12): 1850-1862, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34695176

RESUMO

The genetic basis of leukemogenesis in adults with B-cell acute lymphoblastic leukemia (B-ALL) is largely unclear, and its clinical outcome remains unsatisfactory. This study aimed to advance the understanding of biological characteristics, improve disease stratification, and identify molecular targets of adult B-ALL. Adolescents and young adults (AYA) (15 to 39 years old, n = 193) and adults (40 to 64 years old, n = 161) with Philadelphia chromosome-negative (Ph-) B-ALL were included in this study. Integrated transcriptomic and genetic analyses were used to classify the cohort into defined subtypes. Of the 323 cases included in the RNA sequencing analysis, 278 (86.1%) were classified into 18 subtypes. The ZNF384 subtype (22.6%) was the most prevalent, with 2 novel subtypes (CDX2-high and IDH1/2-mut) identified among cases not assigned to the established subtypes. The CDX2-high subtype (3.4%) was characterized by high expression of CDX2 and recurrent gain of chromosome 1q. The IDH1/2-mut subtype (1.9%) was defined by IDH1 R132C or IDH2 R140Q mutations with specific transcriptional and high-methylation profiles. Both subtypes showed poor prognosis and were considered inferior prognostic factors independent of clinical parameters. Comparison with a previously reported pediatric B-ALL cohort (n = 1003) showed that the frequencies of these subtypes were significantly higher in AYA/adults than in children. We delineated the genetic and transcriptomic landscape of adult B-ALL and identified 2 novel subtypes that predict poor disease outcomes. Our findings highlight the age-dependent distribution of subtypes, which partially accounts for the prognostic differences between adult and pediatric B-ALL.


Assuntos
Isocitrato Desidrogenase/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras , Doença Aguda , Adolescente , Adulto , Fator de Transcrição CDX2/genética , Fator de Transcrição CDX2/metabolismo , Criança , Humanos , Isocitrato Desidrogenase/metabolismo , Pessoa de Meia-Idade , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Transcriptoma , Adulto Jovem
14.
Biosci Rep ; 41(12)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34750615

RESUMO

Targeted knock-in supported by the CRISPR/Cas systems enables the insertion, deletion, and substitution of genome sequences exactly as designed. Although this technology is considered to have wide range of applications in life sciences, one of its prerequisites for practical use is to improve the efficiency, precision, and specificity achieved. To improve the efficiency of targeted knock-in, there first needs to be a reporter system that permits simple and accurate monitoring of targeted knock-in events. In the present study, we created such a system using the PIGP gene, an autosomal gene essential for GPI-anchor biosynthesis, as a reporter gene. We first deleted a PIGP allele using Cas9 nucleases and then incorporated a truncating mutation into the other PIGP allele in two near-diploid human cell lines. The resulting cell clones were used to monitor the correction of the PIGP mutations by detecting GPI anchors distributed over the cell membrane via flow cytometry. We confirmed the utility of these reporter clones by performing targeted knock-in in these clones via a Cas9 nickase-based strategy known as tandem paired nicking, as well as a common process using Cas9 nucleases, and evaluating the efficiencies of the achieved targeted knock-in. We also leveraged these reporter clones to test a modified procedure for tandem paired nicking and demonstrated a slight increase in the efficiency of targeted knock-in by the new procedure. These data provide evidence for the utility of our PIGP-based assay system to quantify the efficiency of targeted knock-in and thereby help improve the technology of targeted knock-in.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Membrana Celular/genética , Citometria de Fluxo , Proteínas Ligadas por GPI/genética , Técnicas de Introdução de Genes , Genes Reporter , Hexosiltransferases/genética , Proteínas de Membrana/genética , Proteína 9 Associada à CRISPR/metabolismo , Membrana Celular/metabolismo , Proteínas Ligadas por GPI/biossíntese , Regulação da Expressão Gênica , Células HCT116 , Hexosiltransferases/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Mutação
15.
Sci Rep ; 11(1): 22627, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799652

RESUMO

Tandem paired nicking (TPN) is a method of genome editing that enables precise and relatively efficient targeted knock-in without appreciable restraint by p53-mediated DNA damage response. TPN is initiated by introducing two site-specific nicks on the same DNA strand using Cas9 nickases in such a way that the nicks encompass the knock-in site and are located within a homologous region between a donor DNA and the genome. This nicking design results in the creation of two nicks on the donor DNA and two in the genome, leading to relatively efficient homology-directed recombination between these DNA fragments. In this study, we sought to identify the optimal design of TPN experiments that would improve the efficiency of targeted knock-in, using multiple reporter systems based on exogenous and endogenous genes. We found that efficient targeted knock-in via TPN is supported by the use of 1700-2000-bp donor DNAs, exactly 20-nt-long spacers predicted to be efficient in on-target cleavage, and tandem-paired Cas9 nickases nicking at positions close to each other. These findings will help establish a methodology for efficient and precise targeted knock-in based on TPN, which could broaden the applicability of targeted knock-in to various fields of life science.


Assuntos
Sistemas CRISPR-Cas , DNA/análise , RNA Guia de Cinetoplastídeos/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Edição de Genes , Técnicas de Introdução de Genes , Marcação de Genes/métodos , Genes Reporter , Engenharia Genética , Células HCT116 , Recombinação Homóloga , Humanos , Plasmídeos/metabolismo , Recombinação Genética
16.
Cell Death Discov ; 7(1): 121, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035227

RESUMO

Internal tandem duplication (ITD) of FMS-like tyrosine kinase 3 (FLT3) confers poor prognosis and is found in approximately 25% of cases of acute myeloid leukemia (AML). Although FLT3 inhibitors have shown clinical benefit in patients with AML harboring FLT3-ITD, the therapeutic effect is limited. Here, to explore alternative therapeutics, we established a cellular model of monoallelic FLT3ITD/WT cells using the CRISPR-Cas9 system in a human myeloid leukemia cell line, K562. cDNA microarray analysis revealed elevated CD52 expression in K562-FLT3ITD/WT cells compared to K562-FLT3WT/WT cells, an observation that was further confirmed by quantitative real-time-PCR and flow cytometric analyses. The elevated expression of CD52 in K562-FLT3ITD/WT cells was decreased in wild-type FLT3 (FLT3-WT) knock-in K562-FLT3ITD/WT cells. In K562-FLT3ITD/WT cells, a STAT5 inhibitor, pimozide, downregulated CD52 protein expression while an AKT inhibitor, afuresertib, did not affect CD52 expression. Notably, an anti-CD52 antibody, alemtuzumab, induced significant antibody-dependent cell-mediated cytotoxicity (ADCC) in K562-FLT3ITD/WT cells compared to K562-FLT3WT/WT cells. Furthermore, alemtuzumab significantly suppressed the xenograft tumor growth of K562-FLT3ITD/WT cells in severe combined immunodeficiency (SCID) mice. Taken together, our data suggested that genetically modified FLT3-ITD knock-in human myeloid leukemia K562 cells upregulated CD52 expression via activation of STAT5, and alemtuzumab showed an antitumor effect via induction of ADCC in K562-FLT3ITD/WT cells. Our findings may allow establishment of a new therapeutic option, alemtuzumab, to treat leukemia with the FLT3-ITD mutation.

17.
Cell Death Discov ; 6(1): 127, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33298865

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive malignancy of the pleura that is currently incurable due to the lack of an effective early diagnostic method and specific medication. The CDKN2A (p16) and NF2 genes are both frequently mutated in MPM. To understand how these mutations contribute to MPM tumor growth, we generated NF2/p16 double-knockout (DKO) cell clones using human MeT-5A and HOMC-B1 mesothelial cell lines. Cell growth and migration activities were significantly increased in DKO compared with parental cells. cDNA microarray analysis revealed differences in global gene expression profiles between DKO and parental cells. Quantitative PCR and western blot analyses showed upregulation of CD24 concomitant with increased phosphorylation of AKT, p70S6K, and c-Jun in DKO clones. This upregulation was abrogated by exogenous expression of NF2 and p16. CD24 knockdown in DKO cells significantly decreased TGF-ß1 expression and increased expression of E-cadherin, an epithelial-mesenchymal transition marker. CD24 was highly expressed in human mesothelioma tissues (28/45 cases, 62%) and associated with the loss of NF2 and p16. Public data analysis revealed a significantly shorter survival time in MPM patients with high CD24 gene expression levels. These results strongly indicate the potential use of CD24 as a prognostic marker as well as a novel diagnostic and therapeutic target for MPM.

18.
J Interferon Cytokine Res ; 40(8): 389-405, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32721246

RESUMO

[Figure: see text] Multiple myeloma (MM) remains an intractable hematological malignancy, despite recent advances in anti-MM drugs. Here, we show that role of PDZ binding kinase (PBK) in MM tumor growth. We identified that interleukin-6 (IL-6) readily increases PBK expression. Kaplan-Meier analysis showed that the MM patients with higher expression of PBK have a significant shorter survival time compared with those with moderate/lower expression of PBK. Knockout of PBK dramatically suppressed in vivo tumor growth in MM cells, while genome editing of PBK changing from asparagine to serine substitution (rs3779620) slightly suppresses the tumor formation. Mechanistically, loss of PBK increased the number of apoptotic cells with concomitant decrease in the phosphorylation level of Stat3 as well as caspase activities. A novel PBK inhibitor OTS514 significantly decreased KMS-11-derived tumor growth. These findings highlight the novel oncogenic role of PBK in tumor growth of myeloma, and it might be a novel therapeutic target for the treatment of patients with MM.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Interleucina-6/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Substituição de Aminoácidos , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Edição de Genes , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Loci Gênicos , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Fosforilação , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3 , Transcriptoma
20.
Biomed Pharmacother ; 128: 110330, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32504922

RESUMO

MEF2D-fusion (M-fusion) genes are newly discovered recurrent gene abnormalities that are detected in approximately 5 % of acute lymphoblastic leukemia (ALL) cases. Their introduction to cells has been reported to transform cell lines or increase the colony formation of bone marrow cells, suggesting their survival-supporting ability, which prompted us to examine M-fusion-targeting drugs. To identify compounds that reduce the protein expression level of MEF2D, we developed a high-throughput screening system using 293T cells stably expressing a fusion protein of MEF2D and luciferase, in which the protein expression level of MEF2D was easily measured by a luciferase assay. We screened 3766 compounds with known pharmaceutical activities using this system and selected staurosporine as a potential inducer of the proteolysis of MEF2D. Staurosporine induced the proteolysis of M-fusion proteins in M-fusion (+) ALL cell lines. Proteolysis was inhibited by caspase inhibitors, not proteasome inhibitors, suggesting caspase dependency. Consistent with this result, the growth inhibitory effects of staurosporine were stronger in M-fusion (+) ALL cell lines than in negative cell lines, and caspase inhibitors blocked apoptosis induced by staurosporine. We identified the cleavage site of MEF2D-HNRNPUL1 by caspases and confirmed that its caspase cleavage-resistant mutant was resistant to staurosporine-induced proteolysis. Based on these results, we investigated another Food and Drug Administration-approved caspase activator, venetoclax, and found that it exerted similar effects to staurosporine, namely, the proteolysis of M-fusion proteins and strong growth inhibitory effects in M-fusion (+) ALL cell lines. The present study provides novel insights into drug screening strategies and the clinical indications of venetoclax.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Caspases/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Estaurosporina/farmacologia , Sulfonamidas/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Fusão Gênica , Células HEK293 , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteólise , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...