Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 8(3): 446-54, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8963435

RESUMO

Patch- and concentration-clamp techniques were used to compare the effects of the uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists (+)-MK-801 (dizocilpine, (+)-5-methyl-10, 11-dihydro-5H-dibenzocyclohepten-5, 10-imine maleate), ketamine, memantine (1-amino-3,5-dimethyladamantane) and amantadine (1-amino-adamantane) on agonist-induced inward currents in freshly dissociated rat hippocampal and striatal neurons. In hippocampal neurons, ketamine (5 microM), menantine (10 microM) and amantadine (100 microM) selectively antagonized inward current responses to NMDA (500 microM plus glycine 5 microM) in a voltage-dependent manner without affecting responses to (s)-alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (100 microM) or gamma-aminobutyric acid (10 microM). The NMDA receptor antagonistic effect of all four agents was typical of open channel blockade. The kinetics of blockade/unblockade was inversely related to antagonist affinity. In hippocampal neurons amantadine was the least potent NMDA receptor antagonist (IC50 18.6 +/- 0.9 microM) and showed the fastest blocking kinetics, whereas (+)-MK-801 was the most potent (IC50 0.12 +/- 0.01 microM) and showed the slowest blocking kinetics. Memantine (IC50 1.04 +/- 0.26 microM) and ketamine (IC50 0.43 +/- 0.10 microM) were almost equipotent and had similar, intermediate blocking kinetics. In striatal neurons recorded under identical conditions (+)-MK-801, ketamine and memantine were 3- to 4-fold less potent whereas amantadine was somewhat more potent than on hippocampal neurons. This could offer an explanation for the better clinical profile of amantadine in Parkinson's disease, as therapeutically relevant concentrations of amantadine are likely to be more active in the striatum whereas memantine is likely to be more active in other structures.


Assuntos
Amantadina/farmacologia , Hipocampo/efeitos dos fármacos , Memantina/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Ketamina/farmacologia , N-Metilaspartato/farmacologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar
2.
Neuroscience ; 70(2): 353-60, 1996 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8848145

RESUMO

The action of diadenosine polyphosphates on Ca2+ channels was studied in two preparations: isolated hippocampal neurons and synaptosomes, both from the rat brain. High-voltage-activated Ca2+ channels were recorded in freshly isolated CA3 neurons using a whole-cell patch-clamp technique. Current-voltage relationships were measured in the control and after incubation in 5 microM diadenosine pentaphosphate. In the majority of tested pyramidal neurons, the latter procedure led to a reversible increase in the high-voltage-activated current through Ca2+ channels when measured at the holding potential of -100 mV but not at -40 mV. In experiments on synaptosomes from the whole brain, diadenosine pentaphosphate taken at a concentration of 100 microM increased the intrasynaptosomal calcium level measured by means of spectrofluorimetry for 26 +/- 1.8 nM (by 24 +/- 2%). Nifedipine failed to block this effect both in synaptosomes and hippocampal neurons. Potentiation of the current through Ca2+ channels in hippocampal neurons as well as the increase in intrasynaptosomal Ca2+ were irreversibly blocked by 5 microM omega-conotoxin, but not by 200 nM omega-Agatoxin-IVA. These data indicate that diadenosine polyphosphates enhance the activity of N-type Ca2+ channels in many central neurons of the rat brain.


Assuntos
Canais de Cálcio/efeitos dos fármacos , Fosfatos de Dinucleosídeos/farmacologia , Hipocampo/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Vasoconstritores/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Relação Dose-Resposta a Droga , Potenciais da Membrana/efeitos dos fármacos , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...