Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(11): 2990-2993, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824310

RESUMO

The study of plasma in liquid jets represents a significant area of research encompassing plasma science, dynamics, and properties. This paper presents experimental studies on plasma formation processes in liquid jets of water, ethanol, and isopropyl based on the dynamics of the third harmonic (TH) reflection from the induced plasma. Through time-resolved experiments, and theoretical estimations using the Keldysh theory, plasma properties including density and frequency for all three media are evaluated. Isopropyl demonstrates the highest values of the characteristics mentioned. These findings hold significant potential for advancing our understanding of plasma-based radiation sources, e.g., terahertz generation.

2.
Nanoscale ; 9(34): 12486-12493, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28817144

RESUMO

Recently, hybrid halide perovskites have emerged as one of the most promising types of materials for thin-film photovoltaic and light-emitting devices because of their low-cost and potential for high efficiency. Further boosting their performance without detrimentally increasing the complexity of the architecture is critically important for commercialization. Despite a number of plasmonic nanoparticle based designs having been proposed for solar cell improvement, inherent optical losses of the nanoparticles reduce photoluminescence from perovskites. Here we use low-loss high-refractive-index dielectric (silicon) nanoparticles for improving the optical properties of organo-metallic perovskite (MAPbI3) films and metasurfaces to achieve strong enhancement of photoluminescence as well as useful light absorption. As a result, we observed experimentally a 50% enhancement of photoluminescence intensity from a perovskite layer with silicon nanoparticles and 200% enhancement for a nanoimprinted metasurface with silicon nanoparticles on top. Strong increase in light absorption is also demonstrated and described by theoretical calculations. Since both silicon nanoparticle fabrication/deposition and metasurface nanoimprinting techniques are low-cost, we believe that the developed all-dielectric approach paves the way to novel scalable and highly effective designs of perovskite based metadevices.

3.
Nanoscale ; 8(41): 17809-17814, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27714058

RESUMO

The advantage of metasurfaces and nanostructures with a high nonlinear response is that they do not require phase matching, and the generated pulses are short in the time domain without additional pulse compression. However, the fabrication of large-scale planar structures by lithography-based methods is expensive, time consuming, and requires complicated preliminary simulations to obtain the most optimized geometry. Here, we propose a novel strategy for the self-assembled fabrication of large-scale resonant metasurfaces, where incident femtosecond laser pulses adjust the initial silicon films via specific surface deformation to be as resonant as possible for a given wavelength. The self-adjusting approach eliminates the necessity of multistep lithography and designing, because interference between the incident and the scattered parts of each laser pulse "imprints" resonant field distribution within the film. The self-adjusted metasurfaces demonstrate a high damage threshold (≈1012 W cm-2) and efficient frequency conversion from near-IR to deep UV. The conversion efficiency is up to 30-fold higher compared with nonresonant smooth Si films. The resulting metasurfaces allow for the generation of UV femtosecond laser pulses at a wavelength of 270 nm with a high peak and average power (≈105 W and ≈1.5 µW, respectively). The results pave the way to the creation of ultrathin nonlinear metadevices working at high laser intensities for efficient deep UV generation at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...