Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36009895

RESUMO

Fusidic acid (FA), a narrow-spectrum antibiotics, is highly sensitive to various Gram-positive cocci associated with skin infections. It has outstanding antibacterial effects against certain Gram-positive bacteria whilst no cross-resistance with other antibiotics. Two series of FA derivatives were synthesized and their antibacterial activities were tested. A new aromatic side-chain analog, FA-15 exhibited good antibacterial activity with MIC values in the range of 0.781-1.563 µM against three strains of Staphylococcus spp. Furthermore, through the assessment by the kinetic assay, similar characteristics of bacteriostasis by FA and its aromatic derivatives were observed. In addition, anti-inflammatory activities of FA and its aromatic derivatives were evaluated by using a 12-O-tetradecanoylphorbol-13-acetate (TPA) induced mouse ear edema model. The results also indicated that FA and its aromatic derivatives effectively reduced TPA-induced ear edema in a dose-dependent manner. Following, multiform computerized simulation, including homology modeling, molecular docking, molecular dynamic simulation and QSAR was conducted to clarify the mechanism and regularity of activities. Overall, the present work gave vital clues about structural modifications and has profound significance in deeply scouting for bioactive potentials of FA and its derivatives.

2.
Bioorg Chem ; 122: 105714, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276603

RESUMO

18ß-glycyrrhetinic acid (GA) is a well-known natural compound of oleanane-type triterpene and is found possessing antimicrobial and anti-inflammatory properties. Nonetheless, its relatively low bioactivity restricts its potential in pharmaceutical applications. To maximize the potential use of this natural herbal compound as antimicrobial and anti-inflammatory agents, the rational modification of GA to enhance its pharmacological activity with low toxicity and to understand the mechanism of action is critically essential. We reported herein the design and synthesis of a series of new GA derivatives. The antimicrobial activities of these new compounds were evaluated by inhibition zone test and minimum inhibitory concentration (MIC) assay. In addition, the anti-inflammatory activity was evaluated by LPS induced BV2 cells inflammation model and 12-O-tetradecanoyl phorbol-13-acetate (TPA) induced ear inflammation mice model. It was found that the derivatives functionalized with a di-substituted phenyl group at the 2-position of GA generally displayed high antimicrobial activity against Gram-positive bacteria (MIC down to 2.5 µM) and potent anti-inflammatory effects (inhibition of NO production up to 55%, comparable to dexamethasone). The in vitro and in vivo results also showed that GA-O-02 and GA-O-06 exert their anti-inflammatory activities through downregulation of NO, pro-inflammatory cytokines and chemokines (IL-1ß, IL-6, IL-12, TNF-α, MCP-1 and MIP-1α) and upregulation of anti-inflammatory cytokines (IL-10). The anti-inflammatory mechanism may involve the inhibition of NF-κB, MAPKs and PI3K/Akt related inflammatory signaling pathways and activation of Nrf2/HO-1 signaling pathway. The results demonstrated that GA-O-02 and GA-O-06 possess great application potential as potent antimicrobial and anti-inflammatory agents.


Assuntos
Ácido Glicirretínico , Fosfatidilinositol 3-Quinases , Animais , Antibacterianos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Camundongos
3.
Front Chem ; 10: 1094841, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36688047

RESUMO

Introduction: Fusidic acid (FA) has been widely applied in the clinical prevention and treatment of bacterial infections. Nonetheless, its clinical application has been limited due to its narrow antimicrobial spectrum and some side effects. Purpose: Therefore, it is necessary to explore the structure-activity relationships of FA derivatives as antibacterial agents to develop novel ones possessing a broad antimicrobial spectrum. Methods and result: First, a pharmacophore model was established on the nineteen FA derivatives with remarkable antibacterial activities reported in previous studies. The common structural characteristics of the pharmacophore emerging from the FA derivatives were determined as those of six hydrophobic centers, two atom centers of the hydrogen bond acceptor, and a negative electron center around the C-21 field. Then, seven FA derivatives have been designed according to the reported structure-activity relationships and the pharmacophore characteristics. The designed FA derivatives were mapped on the pharmacophore model, and the Qfit values of all FA derivatives were over 50 and FA-8 possessed the highest value of 82.66. The molecular docking studies of the partial target compounds were conducted with the elongation factor G (EF-G) of S. aureus. Furthermore, the designed FA derivatives have been prepared and their antibacterial activities were evaluated by the inhibition zone test and the minimum inhibitory concentration (MIC) test. The derivative FA-7 with a chlorine group as the substituent group at C-25 of FA displayed the best antibacterial property with an MIC of 3.125 µM. Subsequently, 3D-QSAR was carried on all the derivatives by using the CoMSIA mode of SYBYL-X 2.0. Conclusion: Hence, a computer-aided drug design model was developed for FA, which can be further used to optimize FA derivatives as highly potent antibacterial agents.

4.
Bioorg Chem ; 109: 104692, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626454

RESUMO

A series of ursolic acid (UA), oleanolic acid (OA) and 18ß-glycyrrhetinic acid (GA) derivatives were synthesized by introducing a range of substituted aromatic side-chains at the C-2 position after the hydroxyl group at C-3 position was oxidized. Their antibacterial activities were evaluated in vitro against a panel of four Staphylococcus spp. The results revealed that the introduction of aromatic side-chains at the C-2 position of GA led to the discovery of potent triterpenoid derivatives for inhibition of both drug sensitive and resistant S. aureus, while the other two series derivatives of UA and OA showed no significant antibacterial activity even at high concentrations. In particular, GA derivative 33 showed good potency against all four Staphylococcus spp. (MIC = 1.25-5 µmol/L) with acceptable pharmacokinetics properties and low cytotoxicity in vitro. Molecular docking was also performed using S. aureus DNA gyrase to rationalize the observed antibacterial activity. This series of GA derivatives has strong potential for the development of a new type of triterpenoid antibacterial agent.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Desenho de Fármacos , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacologia , Animais , Antibacterianos/síntese química , Linhagem Celular , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Microglia , Modelos Moleculares , Estrutura Molecular , Triterpenos Pentacíclicos/síntese química , Ratos , Staphylococcus/efeitos dos fármacos
5.
Bioorg Chem ; 107: 104580, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33418317

RESUMO

Research efforts have been directed to the development of oleanolic acid (OA) based α-glucosidase inhibitors and various OA derivatives showed improved anti-α-glucosidase activity. However, the inhibitory effects of indole infused OA derivatives on α-glucosidase is unknown. Herein, we synthesized a series of indole-OA (2a-2o) and -OA methyl ester (3a-3 l) derivatives with various electron withdrawing groups inducted to indole benzene ring and evaluated their anti-α-glucosidase activity. Indole OA derivatives (2a-2o) exhibited superior α-glucosidase inhibitory effects as compared to OA methyl ester derivatives (3a-3l) and OA (with IC50 values of 4.02 µM-5.30 µM v.s. over 10 µM and 5.52 µM, respectively). In addition, mechanistic studies using biochemical (kinetic assay), biophysical (circular dichroism), and computational (docking) methods revealed that OA-indole derivatives (2a and 2f) are mixed type of α-glucosidase inhibitors and their inhibitory effects were attributed to their capacity of forming the ligand-enzyme complex with α-glucosidase enzyme. Findings from this study support that OA indole derivatives are promising α-glucosidase inhibitors as a potential management of diabetes mellitus.


Assuntos
Inibidores de Glicosídeo Hidrolases/farmacologia , Ácido Oleanólico/farmacologia , alfa-Glucosidases/metabolismo , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Ácido Oleanólico/síntese química , Ácido Oleanólico/química , Saccharomyces cerevisiae/enzimologia , Relação Estrutura-Atividade
6.
Infect Drug Resist ; 11: 1945-1957, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498366

RESUMO

BACKGROUND: Fusidic acid (FA) (WU-FA-00) is the only commercially available antimicrobial from the fusidane family that has a narrow spectrum of activity against Gram-positive bacteria. METHODS: Herein, the hydrogenation derivative (WU-FA-01) of FA was prepared and both compounds were examined against a panel of six bacterial strains. In addition, their anti-inflammatory properties were evaluated using a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema model. RESULTS: The results of the antimicrobial assay revealed that both WU-FA-00 and WU-FA-01 displayed a high level of antimicrobial activity against Gram-positive strains. Moreover, killing kinetic studies were performed and the results were in accordance with the minimum inhibitory concentration and minimum bactericidal concentration results. We also demonstrated that the topical application of WU-FA-00 and WU-FA-01 effectively decreased TPA-induced ear edema in a dose-dependent manner. This inhibitory effect was associated with the inhibition of TPA-induced upregulation of proinflammatory cytokines IL-1ß, TNF-α, and COX-2. WU-FA-01 significantly suppressed the expression levels of p65, IκB-α, and p-IκB-α in the TPA-induced mouse ear model. CONCLUSION: Overall, our results showed that WU-FA-00 and WU-FA-01 not only had effective antimicrobial activities in vitro, especially to the Gram-positive bacteria, but also possessed strong anti-inflammatory effects in vivo. These results provide a scientific basis for developing FA derivatives as antimicrobial and anti-inflammatory agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...