Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943386

RESUMO

Background: Ferroptosis is extremely relevant to the progression of neurodegenerative pathologies such as Alzheimer's disease (AD). Ubiquitin-specific proteases (USP) can affect the NADPH oxidase family. Objective: Our study aimed to elucidate the potential role and molecular basis of a certain USP19 in reducing ferroptosis and mitochondrial injury in AD cells by targeting NOX4 stability. Methods: The deubiquitinase USP family gene USP19, which affects the stability of NOX4 protein, was first screened. The cell model of AD was constructed after interfering with SH-SY5Y cells by Aß1-40, and then SH-SY5Y cells were infected with lentiviral vectors to knock down USP19 and overexpress NOX4, respectively. Finally, the groups were tested for cell viability, changes in cellular mitochondrial membrane potential, lipid reactive oxygen species, intracellular iron metabolism, and NOX4, Mf1, Mf2, and Drp1 protein expression. Results: 5 µmol/L Aß1-40 intervened in SH-SY5Y cells for 24 h to construct a cell model of AD. Knockdown of USP19 decreased the expression of NOX4 protein, promoted the expression of mitochondrial fusion proteins Mnf1 and Mnf2, and inhibited the expression of the splitting protein Drp1. Furthermore, USP19 knockdown decreased mitochondrial membrane potential, SOD, MDA, intracellular iron content and increased GSH/GSSG ratio in SH-SY5Y cells. Our study revealed that NOX4 protein interacts with USP19 and knockdown of USP19 enhanced ubiquitination to maintain NOX4 protein stability. Conclusions: USP19 attenuates mitochondrial damage in SH-SY5Y cells by targeting NOX4 protein with Aß1-40.

2.
Zhongguo Zhong Yao Za Zhi ; 39(16): 3131-5, 2014 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-25509301

RESUMO

OBJECTIVE: To discuss the changes in Wnt pathway inhibiting factors in esophageal precancerosis lesions induced by methyl benzyl nitrosamine (MBNA) and the effect of Gexia Zhuyu decoction. METHOD: Wistar rats were subcutaneously injected with MBNA (3.5 mg x kg(-1) for twice per week to establish the model. Since the 1st day after the model establishment, they were orally administered with Gexia Zhuyu decoction (16, 8 mg x kg(-1)). At the 10th week, esophageal tissues were collected to observe the pathological changes of esophageal mucosa, detect SFRP1, sFRP4, Axin1, Axin2 and GSK-3ß mRNA levels.by fluorescent quantitation PCR analysis and ß-catenin protein level by Western blotting. RESULT: Being induced by MBNA, rats in the model group showed slight atypical hyperplasia in the histopathological examination. Compared with the normal group, Gexia Zhuyu decoction dose high and low groups showed no significant pathomorphological and histological changes. The model group showed lower gene transcription levels of esophageal tissues sFRP1, sFRP4, Axin1 and Axin2 (P < 0.05 or P < 0.01) and higher ß-catenin protein expression level (P < 0.01) than the normal control group. The Gexia Zhuyu decoction low dose group showed higher gene transcription levels of esophageal tissues sFRP1, sFRP4, Axin1 and Axin2 (P < 0.05 or P < 0.01) and lower ß-catenin protein expression level (P < 0.01) than the normal control group. CONCLUSION: Up-regulated ß-catenin protein level and down-regulated Wnt pathway could enhance Wnt pathway activity of MBNA-induced esophageal precancerous lesions. Gexia Zhuyu decoction could down-regulate the ß-catenin protein level and up-regulate the transcription level of Wnt pathway inhibiting factors, but could not block MBNA-induced esophageal precancerosis lesions.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Doenças do Esôfago/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Doenças do Esôfago/genética , Doenças do Esôfago/metabolismo , Doenças do Esôfago/patologia , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Necrose , Nitrosaminas/efeitos adversos , Proteínas/genética , Proteínas/metabolismo , Ratos , Ratos Wistar , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...