Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38894226

RESUMO

This study presents a novel label-free approach for characterizing cell death states, eliminating the need for complex molecular labeling that may yield artificial or ambiguous results due to technical limitations in microscope resolution. The proposed holographic tomography technique offers a label-free avenue for capturing precise three-dimensional (3D) refractive index morphologies of cells and directly analyzing cellular parameters like area, height, volume, and nucleus/cytoplasm ratio within the 3D cellular model. We showcase holographic tomography results illustrating various cell death types and elucidate distinctive refractive index correlations with specific cell morphologies complemented by biochemical assays to verify cell death states. These findings hold promise for advancing in situ single cell state identification and diagnosis applications.


Assuntos
Morte Celular , Holografia , Imageamento Tridimensional , Tomografia , Holografia/métodos , Tomografia/métodos , Imageamento Tridimensional/métodos , Humanos , Refratometria/métodos
2.
Appl Opt ; 60(10): B65-B80, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798138

RESUMO

Holographic tomography (HT) is an advanced label-free optical microscopic imaging method used for biological studies. HT uses digital holographic microscopy to record the complex amplitudes of a biological sample as digital holograms and then numerically reconstruct the sample's refractive index (RI) distribution in three dimensions. The RI values are a key parameter for label-free bio-examination, which correlate with metabolic activities and spatiotemporal distribution of biophysical parameters of cells and their internal organelles, tissues, and small-scale biological objects. This article provides insight on this rapidly growing HT field of research and its applications in biology. We present a review summary of the HT principle and highlight recent technical advancement in HT and its applications.


Assuntos
Holografia/instrumentação , Holografia/métodos , Microscopia/instrumentação , Microscopia/métodos , Animais , Linhagem Celular , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Lasers , Metaboloma , Modelos Químicos , Organelas/ultraestrutura , Refratometria , Análise de Célula Única , Software
3.
Appl Opt ; 60(10): B81-B87, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798139

RESUMO

Data acquisition and processing is a critical issue for high-speed applications, especially in three-dimensional live cell imaging and analysis. This paper focuses on sparse-data sample rotation tomographic reconstruction and analysis with several noise-reduction techniques. For the sample rotation experiments, a live Candida rugosa sample is used and controlled by holographic optical tweezers, and the transmitted complex wavefronts of the sample are recorded with digital holographic microscopy. Three different cases of sample rotation tomography were reconstructed for dense angle with a step rotation at every 2°, and for sparse angles with step rotation at every 5° and 10°. The three cases of tomographic reconstruction performance are analyzed with consideration for data processing using four noise-reduction techniques. The experimental results demonstrate potential capability in retaining the tomographic image quality, even at the sparse angle reconstructions, with the help of noise-reduction techniques.


Assuntos
Holografia/instrumentação , Holografia/métodos , Tomografia/instrumentação , Tomografia/métodos , Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Pinças Ópticas , Rotação , Saccharomycetales , Razão Sinal-Ruído
4.
Sci Rep ; 9(1): 10489, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324823

RESUMO

In this study, a novel adaptive wavefront correction (AWC) technique is implemented on a compactly developed structured illumination holographic tomography (SI-HT) system. We propose a mechanical movement-free compact scanning architecture for SI-HT systems with AWC, implemented by designing and displaying a series of computer-generated holograms (CGH) composed of blazed grating with phase Fresnel lens on a phase-only spatial light modulator (SLM). In the proposed SI-HT, the aberrations of the optical system are sensed by digital holography and are used to design the CGH-based AWC to compensate the phase aberrations of the tomographic imaging system. The proposed method was validated using a standard Siemens star target, its potential application was demonstrated using a live candida rugosa sample, and its label-free three-dimensional refractive index profile was generated at its subcellular level. The experimental results obtained reveal the ability of the proposed method to enhance the imaging performance in both lateral and axial directions.

5.
Opt Express ; 26(10): 12620-12631, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801300

RESUMO

This paper proposes one-shot synthetic aperture digital holographic microscopy using a combination of angular-multiplexing and coherence gating. The proposed angular-multiplexing technique uses multiple noncoplanar incident beams into the synthetic aperture to create tight packed passbands so as to extend spatial frequency spectrum. Coherence gating is performed to prevent the self-interference among the multiple beams. Based on the design guideline proposed herein, a phase-only spatial light modulator is employed as an adjustable blazed grating to split multiple noncoplanar beams and perform angular-multiplexing, and then using coherence gating based on low-coherence-light, superresolution imaging is achieved after one-shot acquisition.

6.
Sci Rep ; 8(1): 5943, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29654324

RESUMO

Digital holographic microtomography is a promising technique for three-dimensional (3D) measurement of the refractive index (RI) profiles of biological specimens. Measurement of the RI distribution of a free-floating single living cell with an isotropic superresolution had not previously been accomplished. To the best of our knowledge, this is the first study focusing on the development of an integrated dual-tomographic (IDT) imaging system for RI measurement of an unlabelled free-floating single living cell with an isotropic superresolution by combining the spatial frequencies of full-angle specimen rotation with those of beam rotation. A novel 'UFO' (unidentified flying object) like shaped coherent transfer function is obtained. The IDT imaging system does not require any complex image-processing algorithm for 3D reconstruction. The working principle was successfully demonstrated and a 3D RI profile of a single living cell, Candida rugosa, was obtained with an isotropic superresolution. This technology is expected to set a benchmark for free-floating single live sample measurements without labeling or any special sample preparations for the experiments.


Assuntos
Análise de Célula Única/métodos , Tomografia/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Refratometria/métodos
7.
Opt Lett ; 43(5): 1143-1146, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29489800

RESUMO

This paper proposes a coded aperture structured illumination (CASI) technique in digital holographic microscopy (DHM). A CASI wave is generated using two binary phase codes (0° and 120°) for spatial phase shifting. The generated CASI wave then interferes with a reference wave to form a coded Fresnel hologram at a single exposure with compressive sensing (CS) to avoid the temporal phase-shifting process of the structured illumination (SI). The CS algorithm is applied to retrieve the missing data of decoded phase-shifted SI-modulated waves, which are used to separate overlapped spatial frequencies for obtaining a larger spatial frequency coverage to provide superresolution imaging. Two phase-only spatial light modulators are applied to generate a directional SI pattern for obtaining a coded aperture with a suitable size to perform one-shot acquisition in the DHM system.

8.
Opt Lett ; 42(7): 1321-1324, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362759

RESUMO

This study presents a novel tomographic imaging technique for living biomedical samples using an optically driven full-angle rotation scheme based on digital holographic microscopy, in which the three-dimensional refractive index distribution inside the sample can be measured and analyzed. To accomplish the full-angle sample rotation, two optical traps are driven by highly focused spots on the top and bottom of the sample. The rim image of the sample outside the focal depth at the different rotation angles and propagation distances can be corrected and compensated, respectively, via numerical focusing; therefore, tomographic imaging of the sample can be conducted. The proposed approach shows that an entire symmetric spectrum can be acquired for tomographic reconstruction without the missing apple core problem as in traditional sample-rotation schemes. The three-dimensional refractive index of living yeast in a fluid medium is measured and verified.


Assuntos
Holografia/métodos , Microscopia/métodos , Rotação , Tomografia Óptica/métodos
9.
Appl Opt ; 54(1): A51-8, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25967022

RESUMO

This study describes the overlapping of spatial frequency bands for synthetic aperture in digital holography using spectrum normalization to effectively enhance the spatial resolutions of image reconstruction. Synthesized spectrum swelling induced by excessive frequency overlaps can be normalized through the inverse apodization of an adjustable window function, which is similar to the effects of suppressing low-frequency expansion and strengthening high-frequency components of the reconstructed images. The results indicated that using the normalized spectrum synthesis that requires only a few frequency bands effectively enhances the spatial resolution and phase sensitivity of reconstructed images in digital holographic microscopy.

10.
Appl Opt ; 53(27): G222-31, 2014 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-25322134

RESUMO

Based on scalar diffraction theory and the geometric structure of liquid crystal on silicon (LCoS), we study the impulse responses and image depth of focus in a holographic three-dimensional (3D) display system. Theoretical expressions of the impulse response and the depth of focus of reconstructed 3D images are obtained, and experimental verifications of the imaging properties are performed. The results indicated that the images formed by holographic display based on the LCoS device were periodic image fields surrounding optical axes. The widths of the image fields were directly proportional to the wavelength and diffraction distance, and inversely proportional to the pixel size of the LCoS device. Based on the features of holographic 3D imaging and focal depth, we enhance currently popular hologram calculation methods of 3D objects to improve the computing speed of hologram calculation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...