Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cosmet Dermatol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769897

RESUMO

BACKGROUND: Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) are effective in the treatment of skin photoaging; however, their low yield and functional decline with passage progression limit their clinical application. Cell-derived nanovesicles (CNVs) are potential alternatives that can address the limitations of EVs derived from MSCs and are conducive to clinical transformations. Hair follicle mesenchymal stem cells (HFMSCs), a type of MSCs, have demonstrated the function of repairing skin tissues; nevertheless, the efficacy of CNVs from HFMSCs (HFMSC-CNVs) in the treatment of skin photoaging remains unclear. Therefore, ultraviolet radiation B (UVB)-induced photoaging nude mice and human dermal fibroblasts (HDFs) were used as experimental models to investigate the therapeutic effects of HFMSC-CNVs in photoaging models. METHODS: HFMSC-CNVs were successfully prepared using the mechanical extrusion method. UVB-induced nude mice and HDFs were used as experimental models of photoaging. Multiple approaches, including hematoxylin-eosin and Masson staining, immunohistochemistry, immunofluorescence, detection of reactive oxygen species (ROS), flow cytometry, western blotting, and other experimental methods, were combined to investigate the possible effects and mechanisms of HFMSC-CNVs in the treatment of skin photoaging. RESULTS: In the nude mouse model of skin photoaging, treatment with HFMSC-CNVs reduced UVB-induced skin wrinkles (p < 0.05) and subcutaneous capillary dilation, alleviated epidermis thickening (p < 0.001), and dermal thinning (p < 0.001). Furthermore, HFMSC-CNVs upregulated proliferating cell nuclear antigen (PCNA) expression (p < 0.05) and decreased the levels of ROS, ß-galactosidase (ß-Gal), and CD86 (p < 0.01). In vitro experiments, treatment with HFMSC-CNVs enhanced the cellular activity of UVB-exposed HDFs (p < 0.05), and reduced ROS levels and the percentage of senescent cells (p < 0.001), and alleviated cell cycle arrest (p < 0.001). HFMSC-CNVs upregulated the expression of Collagen I (Col I), SMAD2/3, transforming growth factor beta (TGF-ß), catalase (CAT), glutathione peroxidase-1 (GPX-1), and superoxide dismutase-1 (SOD-1) (p < 0.05) and downregulated the expression of cycle suppressor protein (p53), cell cycle suppressor protein (p21), and matrix metalloproteinase 3 (MMP3) (p < 0.05). CONCLUSION: Conclusively, the anti-photoaging properties of HFMSC-CNVs were confirmed both in vivo and in vitro. HFMSC-CNVs exert anti-photoaging effects by alleviating cell cycle arrest, decreasing cellular senescence and macrophage infiltration, promoting cell proliferation and extracellular matrix (ECM) production, and reducing oxidative stress by increasing the activity of antioxidant enzymes.

2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(5): 965-971, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37866954

RESUMO

Objective: To investigate the effect of photobiomodulation (PBM) on hippocampal neurogenesis, cognitive function, and inflammatory injury in rats with chronic cerebral hypoperfusion. Methods: Bilateral ovariectomy (OVX) was performed on female Sprague-Dawley (SD) rats. One week later, the rats were randomly assigned to three groups, Sham surgery (or Sham) group, bilateral common carotid artery occlusion (BCCAO) group, and PBM intervention (or BCCAO+PBM) group. There were 8 rats in each group. In the BCCAO group, chronic cerebral hyporeperfusion was induced by permanent ligation of bilateral common carotid arteries and no PBM was given. Rats in the Sham group underwent the same surgical procedure except for the occlusion of the two carotids arteries and no PBM was given. In addition to the BCCAO surgery, rats in the BCCAO+PBM group received 808 nm laser therapy (5 min each time at a laser dose of 20 mW/cm 2) of the frontal cortex every other day for 1 month. Between 86 and 90 days after BCCAO, Morris water maze (MWM) was used to observe the spatial learning and memory function of the rats. The rats were sacrificed on day 90 and immunofluorescence staining and Western blot were performed thereafter. Immunofluorescence staining was used to determine the expression of 5-bromodeoxyuracil nucleoside (BrdU), a cell proliferation marker, glial fibrillary acidic protein (GFAP), an astrocyte marker, doublecortin (DCX), a specific marker of newborn neuron precursor cells, NeuN, a marker of mature neurons, and Iba1, a microglia marker, in the hippocampal dentate gyrus (DG) region. Western blot was performed to analyze the protein expressions of inflammasome components, NLRP3, ASC, cleaved caspase-1, and Iba1 in the hippocampus. Results: In the latency trial of MWM test, BCCAO+PBM rats spent shorter periods of time finding the underwater platform than the BCCAO rats did. In the probe trial, after the platform that was original placed in a quadrant was removed, the BCCAO+PBM rats spent longer periods of time exploring the quadrant than the BCCAO animals did ( P<0.05). Compared with BCCAO rats, BCCAO+PBM rats showed significant decrease in the immunofluorescence intensities of GFAP and Iba1 ( P<0.01). PBM intervention significantly increased the number of BrdU-positive cells in the hippocampal DG region compared with those of Sham and BCCAO groups ( P<0.05). Furthermore, the number of NeuN positive cells showed no significant difference among the three groups, while in BCCAO+PBM group, the number of DCX-positive cells was significantly increased ( P<0.001) and the number of DCX +/NeuN + co-located cells was significantly increased compared to that of the BCCAO group ( P<0.001). Compared with those of the BCCAO group, Western blot results showed that the protein expression levels of Iba1, NLRP3, and cleaved caspase-1 in the BCCAO+PBM group were significantly decreased ( P<0.05), while the ASC protein expression level showed no significant difference. Conclusion: PBM can effectively improve the spatial learning and memory function in rats with chronic cerebral hypoperfusion, inhibit the activation of glial cells, reduce inflammatory damage mediated by NLRP3 inflammasome, and promote the regeneration of endogenous neural stem cells in the hippocampal DG region of rats.


Assuntos
Isquemia Encefálica , Inflamassomos , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/farmacologia , Bromodesoxiuridina/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Cognição/fisiologia , Anti-Inflamatórios/farmacologia , Hipocampo , Aprendizagem em Labirinto , Neurogênese , Caspases/metabolismo
3.
Sci Rep ; 7: 42660, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28205591

RESUMO

The current study examined whether the steroid hormone, 17ß-estradiol (E2) can exert long-lasting beneficial effects upon axonal health, synaptic plasticity, dementia-related amyloid-beta (Aß) protein expression, and hippocampal-dependent cognitive function in an animal model of chronic cerebral hypoperfusion and vascular dementia (VaD). Chronic cerebral hypoperfusion and VaD was induced by bilateral common carotid artery occlusion (BCCAO) in adult male Sprague Dawley rats. Low dose E2 administered for the first 3-months after BCCAO exerted long-lasting beneficial effects, including significant neuroprotection of hippocampal CA1 neurons and preservation of hippocampal-dependent cognitive function when examined at 6-months after BCCAO. E2 treatment also prevented BCCAO-induced damage to hippocampal myelin sheaths and oligodendrocytes, enhanced expression of the synaptic proteins synaptophysin and PSD95 in the hippocampus, and prevented BCCAO-induced loss of total and mushroom dendritic spines in the hippocampal CA1 region. Furthermore, E2-treatment also reduced BCCAO induction of dementia-related proteins expression such as p-tau (PHF1), total ubiquitin, and Aß1-42, when examined at 6 m after BCCAO. Taken as a whole, the results suggest that low-dose E2 replacement might be a potentially promising therapeutic modality to attenuate or block negative neurological consequences of chronic cerebral hypoperfusion and VaD.


Assuntos
Cognição/efeitos dos fármacos , Demência Vascular/psicologia , Espinhas Dendríticas/efeitos dos fármacos , Estradiol/farmacologia , Fármacos Neuroprotetores/farmacologia , Células Piramidais/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Biomarcadores , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Demência Vascular/tratamento farmacológico , Demência Vascular/patologia , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Masculino , Células Piramidais/metabolismo , Células Piramidais/patologia , Ratos , Memória Espacial/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
4.
Beijing Da Xue Xue Bao Yi Xue Ban ; 48(1): 154-9, 2016 Feb 18.
Artigo em Chinês | MEDLINE | ID: mdl-26885927

RESUMO

OBJECTIVE: To design Keap1-tat peptide and explore its neuroprotective role on hipocampal CA1 neuron, as well as the effect on spacial learning and memory function following global cerebral ischemia. METHODS: Adult male Sprague Dawley (SD) rats were subjected to global cerebral ischemia (GCI) by four-vessel occlusion for 15 min and randomly divided into five groups: sham, sham+Keap1-tat, ischemia/reperfusion (I/R), Keap1-tat peptide- and vehicle-administrated groups. For Keap1-tat or vehicle groups, the rats were treated with Keap1-tat (30, 50, 100 µg in 5 µL 0.9% saline) or the same volume vehicle by intracerebroventricular injection (icv) 30 min prior to ischemia. Cresyl violet staining was used to observe the surviving neurons and 4-hydroxy-2-noneal (4-HNE) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) immunostaining were used to detect the change of markers response to oxidative stress in hippocampal CA1 region. The spatial learning and memory function of the rats was evaluated using Morris water maze. RESULTS: Compared with sham group, the number of surviving neurons in ischemia-reperfusion and vehicle groups significantly decreased in the hippocampal CA1 region (P<0.05), while administration of Keap1-tat significantly decreased the damage following GCI (P<0.05), and the dose of 50 µg existed the most effective neuroprotective role. Furthermore, immunostaining intensity of 4-HNE and 8-OHdG, markers of oxidative stress damage attenuated by Keap1-tat peptide as compared with vehicle group in CA1 region. Of significant interest, the time of finding underwater platform in Keap1-tat group animals was significantly short, and after removing the platform, the probe time of Keap1-tat group animals in the original quadrant where the platform was significantly increased compared with that of vehicle and I/R group animals (P<0.05). CONCLUSION: Keap1-tat peptide can effectively attenuate neuronal damage in hippocampal CA1 region and improve learning and memory function, which might bedue to the attenuation of oxidative stress caused by GCI.


Assuntos
Isquemia Encefálica/fisiopatologia , Região CA1 Hipocampal/patologia , Peptídeos e Proteínas de Sinalização Intracelular/uso terapêutico , Aprendizagem em Labirinto , Memória , Estresse Oxidativo , Animais , Proteína 1 Associada a ECH Semelhante a Kelch , Masculino , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Peptídeos/uso terapêutico , Ratos , Ratos Sprague-Dawley
5.
J Neurosci ; 35(44): 14727-39, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538645

RESUMO

The current study examined efficacy of a small Tat (trans-activator of transcription)-conjugated peptide activator of the Nrf2 (nuclear factor-E2-related factor-2) antioxidant/cell-defense pathway as a potential injury-specific, novel neuroprotectant against global cerebral ischemia (GCI). A competitive peptide, DEETGE-CAL-Tat, was designed to facilitate Nrf2 activation by disrupting interaction of Nrf2 with Keap1 (kelch-like ECH-associated protein 1), a protein that sequesters Nrf2 in the cytoplasm and thereby inactivates it. The DEETGE-CAL-Tat peptide contained the critical sequence DEETGE for the Nrf2-Keap1 interaction, the cell transduction domain of the HIV-Tat protein, and the cleavage sequence of calpain, which is sensitive to Ca(2+) increase and allows injury-specific activation of Nrf2. Using an animal model of GCI, we demonstrated that pretreatment with the DEETGE-CAL-Tat peptide markedly decreased Nrf2 interaction with Keap1 in the rat hippocampal CA1 region after GCI, and enhanced Nrf2 nuclear translocation and DNA binding. The DEETGE-CAL-Tat peptide also induced Nrf2 antioxidant/cytoprotective target genes, reduced oxidative stress, and induced strong neuroprotection and marked preservation of hippocampal-dependent cognitive function after GCI. These effects were specific as control peptides lacked neuroprotective ability. Intriguingly, the DEETGE-CAL-Tat peptide effects were also injury specific, as it had no effect upon neuronal survival or cognitive performance in sham nonischemic animals. Of significant interest, peripheral, postischemia administration of the DEETGE-CAL-Tat peptide from days 1-9 after GCI also induced robust neuroprotection and strongly preserved hippocampal-dependent cognitive function. Based on its robust neuroprotective and cognitive-preserving effects, and its unique injury-specific activation properties, the DEETGE-CAL-Tat peptide represents a novel, and potentially promising new therapeutic modality for the treatment of GCI. SIGNIFICANCE STATEMENT: The current study demonstrates that DEETGE-CAL-Tat, a novel peptide activator of a key antioxidant gene transcription pathway in the hippocampus after global cerebral ischemia, can exert robust neuroprotection and preservation of cognitive function. A unique feature of the peptide is that its beneficial effects are injury specific. This feature is attractive as it targets drug activation specifically in the site of injury, and likely would lead to a reduction of undesirable side effects if translatable to the clinic. Due to its injury-specific activation, robust neuroprotection, and cognitive-preserving effects, this novel peptide may represent a much-needed therapeutic advance that could have efficacy in the treatment of global cerebral ischemia.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Peptídeos Penetradores de Células/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/genética , Relação Dose-Resposta a Droga , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch , Masculino , Dados de Sequência Molecular , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Hippocampus ; 25(3): 286-96, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25271147

RESUMO

Ischemic postconditioning (Post C), which involves administration of a brief ischemia after the initial ischemic event, has been demonstrated to be strongly neuroprotective against global cerebral ischemia (GCI) and to improve cognitive outcome. To enhance understanding of the underlying mechanisms, the current study examined the role of NMDA receptors in mediating the beneficial effects of Post C (3 min ischemia) administered 2 days after GCI in adult male rats. The results revealed that Post C was strongly neuroprotective against GCI, and that this effect was blocked by administration of the NMDA receptor antagonist MK-801. Further work revealed that the NR2A-type NMDA receptors mediate the Post C beneficial effects as administration of a NR2A-preferring antagonist (NVP-A) blocked Post C neuroprotection and cognitive enhancement, while administration of a NR2B-preferring antagonist (Ro25) was without effect. Post C significantly up-regulated NR2A levels and phosphorylation of NR2A in the hippocampal CA1 region after Post C. Post C also increased Ca(2+) influx and activation/phosphorylation of CamKIIα at Thr(286), effects that were NR2A mediated as they were blocked by NVP-A. Phosphorylation of ERK and CREB was also increased by Post C, as were two downstream CREB-dependent prosurvival factors, brain derived neurotropic factor (BDNF) and Bcl2, effects that were blocked by the NR2A antagonist, NVP-A. Taken as a whole, the current study provides evidence that NR2A-activation and downstream prosurvival signaling is a critical mediator of Post C-induced neuroprotection and cognitive enhancement following GCI.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/terapia , Proteína de Ligação a CREB/metabolismo , Cálcio/metabolismo , Maleato de Dizocilpina/uso terapêutico , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Imunoprecipitação , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fenóis/uso terapêutico , Piperidinas/uso terapêutico , Quinoxalinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
7.
Brain ; 136(Pt 5): 1432-45, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23474850

RESUMO

Females who enter menopause prematurely via bilateral ovariectomy (surgical menopause) have a significantly increased risk for cognitive decline and dementia. To help elucidate the mechanisms underlying this phenomenon, we used an animal model of surgical menopause, long-term (10-week) bilateral ovariectomy in female rats. Herein, we demonstrate that long-term oestrogen deprivation dramatically increases sensitivity of the normally resistant hippocampal CA3 region to ischaemic stress, an effect that was gender-specific, as it was not observed in long-term orchiectomized males. Furthermore, the enhanced damage to the CA3 region correlated with a worse cognitive outcome after ischaemic stress. Long-term ovariectomized rats also displayed a robust hyperinduction of Alzheimer's disease-related proteins in the CA3 region and a switch in amyloid precursor protein processing from non-amyloidogenic to amyloidogenic following ischaemic stress CA3 hypersensitivity also extended to an Alzheimer's disease-relevant insult, as the CA3 region of long-term ovariectomized rats was profoundly hypersensitive to the neurotoxic effects of amyloid-ß1-42, the most amyloidogenic form of the amyloid-ß peptide. Additional studies revealed that CA3 region hypersensitivity, Alzheimer's disease-related protein induction, and amyloidogenesis are mediated by a NADPH oxidase/superoxide/c-Jun N-terminal kinase/c-Jun signalling pathway, involving both transcriptional and post-translational mechanisms. In addition, while 17ß-oestradiol replacement at the end of the long-term oestrogen deprivation period could not prevent CA3 hypersensitivity and amyloidogenesis, if 17ß-oestradiol was initiated at the time of ovariectomy and maintained throughout the 10-week oestrogen deprivation period, it completely prevented these events, providing support for the 'critical window' hypothesis for oestrogen replacement therapy benefit. Collectively, these findings may help explain the increased risk of cognitive decline and dementia observed in women following surgical menopause, and they provide increased support that early 17ß-oestradiol replacement is critical in preventing the negative neural effects associated with bilateral ovariectomy.


Assuntos
Peptídeos beta-Amiloides/biossíntese , Peptídeos beta-Amiloides/toxicidade , Região CA3 Hipocampal/metabolismo , Menopausa/metabolismo , Degeneração Neural/metabolismo , Ovariectomia , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/toxicidade , Estresse Fisiológico/fisiologia , Peptídeos beta-Amiloides/metabolismo , Animais , Região CA3 Hipocampal/patologia , Feminino , Masculino , Modelos Animais , Degeneração Neural/patologia , Ovariectomia/efeitos adversos , Fragmentos de Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Hippocampus ; 23(7): 634-47, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23536494

RESUMO

Global cerebral ischemia, such as occurs following cardiac arrest, can lead to oxidative stress, hippocampal neuronal cell death, and cognitive defects. The current study examined the potential beneficial effect and underlying mechanisms of post-treatment with the naturally occurring isoflavonic phytoestrogen, genistein, which has been implicated to attenuate oxidative stress. Genistein (1 mg kg(-1)) was administered i.v. 5 min after reperfusion in rats subjected to four-vessel global cerebral ischemia (GCI). The results revealed that genistein exerted significant neuroprotection of hippocampal CA1 neurons following GCI, as evidenced by an increase in NeuN-positive neurons and the decrease in TUNEL-positive neurons. Furthermore, genistein treatment also resulted in significantly improved spatial learning and memory as compared to vehicle control animals. The beneficial effects of genistein appear to be mediated by an increase of phosphorylation/activation of eNOS, with subsequent activation of the antioxidant/detoxification Nrf2/Keap1 transcription system. Along these lines, genistein increased keap1 S-nitrosylation, with a corresponding nuclear accumulation and enhanced DNA binding activity of Nrf2. Genistein also enhanced levels of the Nrf2 downstream antioxidant protein, heme oxygenase (HO)-1, as compared to vehicle control groups. In accordance with its induction of Nrf2 activation, genistein exerted a robust attenuation of oxidative DNA damage and lipid peroxidative damage in hippocampal CA1 neurons after GCI, as measured by immunofluorescence staining of the oxidative stress markers, 8-hydroxy-2-deoxyguanosine (8-OHdG) and 4-Hydroxynonenal (4-HNE). Interestingly, the aforementioned effects of genistein were abolished by pretreatment with L-NAME, an inhibitor of eNOS activation. In conclusion, the results of the study demonstrate that low dose genistein can exert significant antioxidant, neuroprotective, and cognitive-enhancing effects in the hippocampal CA1 region following GCI. Mechanistically, the beneficial effects of genistein appear to be mediated by enhanced eNOS phosphorylation/activation and nitric oxide (NO)-mediated thiol modification of Keap1, with subsequent upregulation of the Nrf2/HO-1 antioxidative signaling pathway and a resultant attenuation of oxidative stress.


Assuntos
Isquemia Encefálica/metabolismo , Genisteína/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Western Blotting , Isquemia Encefálica/patologia , Imunofluorescência , Heme Oxigenase-1/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fitoestrógenos/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
9.
Neurochem Int ; 59(6): 749-58, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21867737

RESUMO

Delayed ischemic postconditioning (Post C), which involves a brief ischemia followed by reperfusion 2 days after 8-10min global cerebral ischemia (GCI), has been shown to exert a remarkable protection of the vulnerable hippocampal CA1 region of the brain and attenuation of behavioral deficits, although the mechanisms remain poorly understood. The purpose of the current study was to explore the effect of Post C upon mitochondrial integrity, cytochrome c release and Bax translocation as a potential key mechanism for Post C protection of the critical hippocampal CA1 region neurons. The results of the study revealed that ischemic Post C (3min) administered 2 days after 8-min GCI exerted a robust preservation from GCI injury, as evidenced by the increase of NeuN-positive and the decrease of TUNEL-positive cells, as well as morphological features of mitochondrial integrity in the hippocampal CA1 region. We also found that Post C significantly blocked inner mitochondrial membrane potential depolarization, as shown by JC-1 staining, and attenuates cytochrome c release and Bax translocation induced by GCI. Pre-treatment of the PI3K inhibitor LY294002, 20min prior to Post C, significantly attenuated Post C-induced elevation of p-Akt and p-GSK3ß, as well as prevented Post C enhancement of mitochondrial integrity and Post C neuroprotection. The results suggest that phosphorylation of Akt and subsequent inactivation of GSK3ß signaling is critical in mediating Post C beneficial effects upon mitochondrial integrity, function and neuroprotection following GCI injury.


Assuntos
Infarto Encefálico/terapia , Região CA1 Hipocampal/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Pós-Condicionamento Isquêmico/métodos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia , Animais , Infarto Encefálico/patologia , Infarto Encefálico/prevenção & controle , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/terapia , Região CA1 Hipocampal/irrigação sanguínea , Região CA1 Hipocampal/fisiopatologia , Glicogênio Sintase Quinase 3 beta , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Degeneração Neural/prevenção & controle , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...