Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Alzheimers Res Ther ; 13(1): 6, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397489

RESUMO

BACKGROUND: Molecular tweezers (MTs) are broad-spectrum inhibitors of abnormal protein aggregation. A lead MT, called CLR01, has been demonstrated to inhibit the aggregation and toxicity of multiple amyloidogenic proteins in vitro and in vivo. Previously, we evaluated the effect of CLR01 in the 3 × Tg mouse model of Alzheimer's disease, which overexpresses mutant human presenilin 1, amyloid ß-protein precursor, and tau and found that subcutaneous administration of the compound for 1 month led to a robust reduction of amyloid plaques, neurofibrillary tangles, and microgliosis. CLR01 also has been demonstrated to inhibit tau aggregation in vitro and tau seeding in cell culture, yet because in Alzheimer's disease (AD) and in the 3 × Tg model, tau hyperphosphorylation and aggregation are thought to be downstream of Aß insults, the study in this model left open the question whether CLR01 affected tau in vivo directly or indirectly. METHODS: To determine if CLR01 could ameliorate tau pathology directly in vivo, we tested the compound similarly using the P301S-tau (line PS19) mouse model. Mice were administered 0.3 or 1.0 mg/kg per day CLR01 and tested for muscle strength and behavioral deficits, including anxiety- and disinhibition-like behavior. Their brains then were analyzed by immunohistochemical and biochemical assays for pathological forms of tau, neurodegeneration, and glial pathology. RESULTS: CLR01 treatment ameliorated muscle-strength deterioration, anxiety-, and disinhibition-like behavior. Improved phenotype was associated with decreased levels of pathologic tau forms, suggesting that CLR01 exerts a direct effect on tau in vivo. Limitations of the study included a relatively short treatment period of the mice at an age in which full pathology is not yet developed. In addition, high variability in this model lowered the statistical significance of the findings of some outcome measures. CONCLUSIONS: The findings suggest that CLR01 is a particularly attractive candidate for the treatment of AD because it targets simultaneously the two major pathogenic proteins instigating and propagating the disease, amyloid ß-protein (Aß), and tau, respectively. In addition, our study suggests that CLR01 can be used for the treatment of other tauopathies in the absence of amyloid pathology.


Assuntos
Doença de Alzheimer , Proteínas tau , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Emaranhados Neurofibrilares , Proteínas tau/genética
3.
JCI Insight ; 4(8)2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30996130

RESUMO

Zebrafish are increasingly utilized to model cardiomyopathies and regeneration. Current methods evaluating cardiac function have known limitations, fail to reliably detect focal mechanics, and are not readily feasible in zebrafish. We developed a semiautomated, open-source method - displacement analysis of myocardial mechanical deformation (DIAMOND) - for quantitative assessment of 4D segmental cardiac function. We imaged transgenic embryonic zebrafish in vivo using a light-sheet fluorescence microscopy system with 4D cardiac motion synchronization. Our method permits the derivation of a transformation matrix to quantify the time-dependent 3D displacement of segmental myocardial mass centroids. Through treatment with doxorubicin, and by chemically and genetically manipulating the myocardial injury-activated Notch signaling pathway, we used DIAMOND to demonstrate that basal ventricular segments adjacent to the atrioventricular canal display the highest 3D displacement and are also the most susceptible to doxorubicin-induced injury. Thus, DIAMOND provides biomechanical insights into in vivo segmental cardiac function scalable to high-throughput research applications.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cardiomiopatias/induzido quimicamente , Doxorrubicina/efeitos adversos , Ventrículos do Coração/diagnóstico por imagem , Imageamento Tridimensional/métodos , Animais , Animais Geneticamente Modificados , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Embrião não Mamífero , Estudos de Viabilidade , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Contração Miocárdica/efeitos dos fármacos , Miocárdio/patologia , Neoplasias/tratamento farmacológico , Receptores Notch/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...