Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1115069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252246

RESUMO

Background: Vascular calcification (VC) is a complex process that has been linked to conditions including cardiovascular diseases and chronic kidney disease. There is an ongoing debate about whether vitamin K (VK) can effectively prevent VC. To assess the efficiency and safety of VK supplementation in the therapies of VC, we performed a systematic review and meta-analysis of recent studies. Methods: We searched major databases, including PubMed, the Cochrane Library, Embase databases, and Web of Science up until August 2022. 14 randomized controlled trials (RCTs) describing the outcomes of treatment for VK supplementation with VC have been included out of 332 studies. The results were reported in the change of coronary artery calcification (CAC) scores, other artery and valve calcification, vascular stiffness, and dephospho-uncarboxylated matrix Gla protein (dp-ucMGP). The reports of severe adverse events were recorded and analyzed. Results: We reviewed 14 RCTs, comprising a total of 1,533 patients. Our analysis revealed that VK supplementation has a significant effect on CAC scores, slowing down the progression of CAC [I2 = 34%, MD= -17.37, 95% CI (-34.18, -0.56), p = 0.04]. The study found that VK supplementation had a significant impact on dp-ucMGP levels, as compared to the control group, where those receiving VK supplementation had lower values [I2 = 71%, MD = -243.31, 95% CI (-366.08, -120.53), p = 0.0001]. Additionally, there was no significant difference in the adverse events between the groups [I2 = 31%, RR = 0.92, 95% CI (-0.79,1.07), p = 0.29]. Conclusion: VK may have therapeutic potential for alleviating VC, especially CAC. However, more rigorously designed RCTs are required to verify the benefits and efficacy of VK therapy in VC.

2.
Ther Apher Dial ; 27(5): 937-948, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37115023

RESUMO

OBJECTIVE: Evaluate the impact of peritoneal dialysis catheter (PDC) tail-end design variations on PDC-related complications. METHOD: Effective data were extracted from databases. The literature was evaluated according to the Cochrane Handbook for Systematic Reviews of Interventions, and a meta-analysis was conducted. RESULTS: Analysis revealed that the straight-tailed catheter was superior to the curled-tailed catheter in minimizing catheter displacement and complication-induced catheter removal (RR = 1.73, 95%CI:1.18-2.53, p = 0.005). In terms of complication-induced PDC removal, the straight-tailed catheter was superior to the curled-tailed catheter (RR = 1.55, 95%CI: 1.15-2.08, p = 0.004). CONCLUSION: Curled-tail design of the catheter increased the risk of catheter displacement and complication-induced catheter removal, whereas the straight-tailed catheter was superior to the curled-tailed catheter in terms of reducing catheter displacement and complication-induced catheter removal. However, the analysis and comparison of factors such as leakage, peritonitis, exit-site infection, and tunnel infection did not reveal a statistically significant difference between the two designs.


Assuntos
Cateteres de Demora , Diálise Peritoneal , Humanos , Cateteres de Demora/efeitos adversos , Revisões Sistemáticas como Assunto , Cateterismo/efeitos adversos , Diálise Peritoneal/efeitos adversos , Complicações Pós-Operatórias
3.
Int Urol Nephrol ; 55(7): 1837-1846, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36781680

RESUMO

BACKGROUND: Renal interstitial fibrosis (RIF) seriously threatens the health of individuals. MiRNAs regulate the progression of fibrosis. Nevertheless, the detailed function of miR-449a in RIF is largely unknown. METHODS: In vitro and in vivo models of RIF were developed to evaluate the function of miR-449a. The relationship among miR-449a, KLF4, and MFN2 was explored using a dual-luciferase reporter assay and chromatin immunoprecipitation. Additionally, the pathological changes in the mice were detected using Masson staining. The mRNA and protein expressions were assessed using quantitative reverse transcription polymerase chain reaction and western blot, respectively. RESULTS: TGF-ß1 downregulated the expressions of KLF4 and MFN2 in TCMK-1 cells, but upregulated the level of miR-449a. The downregulation of miR-449a significantly inhibited TGF-ß1-induced upregulation of fibrotic proteins in TCMK-1 cells. Meanwhile, miR-449a directly targeted KLF4. Moreover, KLF4 overexpression activated MFN2 transcription and reversed TGF-ß1-induced fibrosis by positively regulating MFN2. Furthermore, the downregulation of miR-449a could obviously alleviate the symptoms of RIF in mice with unilateral ureteral obstruction. CONCLUSION: MiR-449a downregulation attenuated the development of RIF by mediating the KLF4/MFN2 axis. Therefore, miR-449a might act as a target in treating RIF.


Assuntos
Nefropatias , MicroRNAs , Animais , Camundongos , Regulação para Baixo , Fibrose , Nefropatias/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
4.
Epigenomics ; 14(4): 199-217, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35172608

RESUMO

Aims: The authors aim to investigate the function of circPlekha7 in renal fibrosis. Methods: Human renal tissues from chronic kidney disease patients, kidney cell line and primary cultured renal tubular epithelial cells were used. TGF-ß1-treated human kidney 2 cells/tubular epithelial cells and a unilateral ureteral obstruction mouse model were employed to study renal fibrosis. Results: circPlekha7 was diminished in renal tissues from chronic kidney disease patients and TGF-ß1-treated human kidney 2 cells and tubular epithelial cells, while miR-493-3p was upregulated. Overexpression of circPlekha7 or knockdown of miR-493-3p suppressed TGF-ß1 induced enhancements on epithelial to mesenchymal transition and fibrogenesis, as well as attenuated renal fibrosis and injury in mice subjected to unilateral ureteral obstruction. circPlekha7 bound with miR-493-3p, which directly targeted KLF4. Conclusion: circPlekha7 inhibits epithelial to mesenchymal transition of renal tubular epithelial cells and fibrosis via targeting miR-493-3p to de-repress KLF4/mitofusin2 expression.


Chronic kidney disease (CKD) ultimately leads to complete kidney dysfunction. The incidence of CKD continues to rise as a result of the increasingly aging population, and the treatment is very limited. In this study, the authors identified a novel molecule, circPlekha7, that plays a crucial role in CKD development and progression. The level of circPlekha7 is lower in the kidney tissues of CKD patients, and increasing its level could attenuate kidney injury and fibrosis. This work helps researchers understand the disease better and, more importantly, provides new avenues to develop therapy.


Assuntos
MicroRNAs , RNA Circular , Insuficiência Renal Crônica , Animais , Transição Epitelial-Mesenquimal , Fibrose , Humanos , Rim/patologia , Fator 4 Semelhante a Kruppel/genética , Fator 4 Semelhante a Kruppel/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Transdução de Sinais
5.
Kidney Blood Press Res ; 47(3): 177-184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35038705

RESUMO

INTRODUCTION: Diabetic nephropathy (DN) is the leading cause of kidney failure worldwide. To explore the pathogenesis and effective biological target of DN is beneficial to seeking novel treatment strategies. OBJECTIVE: This study aimed to investigate the role of the lncRNA Dlx6os1/SOX6/EZH2 axis in DN progression. METHODS: PAS staining was performed to evaluate extracellular matrix accumulation; ELISA was carried out to assess the levels of urine microalbumin and blood glucose concentration; RT-qPCR was carried out to detect the levels of lncRNA Dlx6os1, TNF-α, IL-1ß, IL-6, SOX6, and EZH2. Western blot was performed to assess the levels of Col-IV, FN, TGF-ß1, and SOX6 proteins. RIP assay was carried out to verify the interaction between lncRNA Dlx6os1 and EZH2. ChIP-qPCR was conducted to verify the interaction between EZH2 and SOX6 promoter. RESULTS: Our results illustrated that lncRNA Dlx6os1 was highly expressed in DN mice and HG-induced SV40 MES13 cells. LncRNA Dlx6os1 knockdown inhibited HG-induced SV40 MES13 cell proliferation, fibrosis, and inflammatory cytokine release. LncRNA Dlx6os1 inhibited SOX6 expression by recruiting EZH2 in HG-SV40 MES13 cells, and SOX6 mediated the effects of lncRNA Dlx6os1 on proliferation, fibrosis, and inflammatory factor release of HG-induced SV40 MES13 cells. CONCLUSION: LncRNA Dlx6os1 accelerates the progression of DN by epigenetically repressing SOX6 via recruiting EZH2.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , RNA Longo não Codificante , Animais , Proliferação de Células , Nefropatias Diabéticas/patologia , Proteína Potenciadora do Homólogo 2 de Zeste , Fibrose , Camundongos , RNA Longo não Codificante/genética , Fatores de Transcrição SOXD
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...