Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 307: 114512, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35066198

RESUMO

Microalgae blooms are always blamed for the interruption of the aquatic environment and pose a risk to the source of drinking water. Meanwhile, microalgae as primary producers are a kind of resource pool and could benefit the environment and contribute to building a circular economy. The lipid and polyhydroxybutyrate (PHB) in the cells of microalgae could be alternatives to fossil fuels and plastics, respectively, which are the culprits of global warming and plastic pollution. Besides, some microalgae are rich in nutrients, such as proteins and astaxanthin, which make themselves suitable for feed additives. As wastewater is rich in nutrients necessary for microalgae, thus, value-added product recovery via microalgae could be an approach to valorizing wastewater. However, a one-size-fits-all approach deploying various wastewater for the above products cannot be summarized. On the contrary, specific technical protocols should be tailored regarding each product in microalgae biomass with various wastewater. Thus, this review is to summarize the research effort by far on wastewater-cultivated microalgae for value-added products. Wastewater type, regulation methods, and targeted product yields are compiled and discussed and are expected to guide future extrapolation into a commercial scale.


Assuntos
Microalgas , Biomassa , Combustíveis Fósseis , Nutrientes , Águas Residuárias
2.
J Environ Manage ; 285: 112149, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33607565

RESUMO

Micropollutants in wastewater are a set of compounds receiving a growing concern to the environment and human health. As a green and low-cost process, microalgae-based systems (MBSs) have already been demonstrated the ability of micropollutant removal. In the present review, 114 micropollutants and 16 microalgae species in total are summarized and analyzed to present an overview capability of the MBSs. The analysis shows that MBSs can eradicate most of the included micropollutants with 94 compounds (82% of total) being removed by ≥ 50%. Regarding the reliability of removal efficiency, those from hormone active substances, macrolides, and cephalosporins are consistently removed at a high level (≥80%). Herein, biodegradation is the predominant removal pathway for most micropollutants, particularly, bearing electron-donating groups. Besides, the large family of microalgae species and unique phototrophic ability enables broad ecological niches and extra abilities over activated sludge systems to remove some recalcitrant micropollutants, e.g. pesticides. In the future study, optimization on the reactor configuration and operation parameters is expected to improve the stability of MBSs before extrapolating to full-scale deployment.


Assuntos
Microalgas , Poluentes Químicos da Água , Humanos , Reprodutibilidade dos Testes , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...