Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(27): e2406946121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917015

RESUMO

Progerin, the protein that causes Hutchinson-Gilford progeria syndrome, triggers nuclear membrane (NM) ruptures and blebs, but the mechanisms are unclear. We suspected that the expression of progerin changes the overall structure of the nuclear lamina. High-resolution microscopy of smooth muscle cells (SMCs) revealed that lamin A and lamin B1 form independent meshworks with uniformly spaced openings (~0.085 µm2). The expression of progerin in SMCs resulted in the formation of an irregular meshwork with clusters of large openings (up to 1.4 µm2). The expression of progerin acted in a dominant-negative fashion to disrupt the morphology of the endogenous lamin B1 meshwork, triggering irregularities and large openings that closely resembled the irregularities and openings in the progerin meshwork. These abnormal meshworks were strongly associated with NM ruptures and blebs. Of note, the progerin meshwork was markedly abnormal in nuclear blebs that were deficient in lamin B1 (~50% of all blebs). That observation suggested that higher levels of lamin B1 expression might normalize the progerin meshwork and prevent NM ruptures and blebs. Indeed, increased lamin B1 expression reversed the morphological abnormalities in the progerin meshwork and markedly reduced the frequency of NM ruptures and blebs. Thus, progerin expression disrupts the overall structure of the nuclear lamina, but that effect-along with NM ruptures and blebs-can be abrogated by increased lamin B1 expression.


Assuntos
Lamina Tipo A , Lamina Tipo B , Lâmina Nuclear , Lâmina Nuclear/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Lamina Tipo B/metabolismo , Lamina Tipo B/genética , Humanos , Progéria/metabolismo , Progéria/genética , Progéria/patologia , Animais , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos
2.
Proc Natl Acad Sci U S A ; 120(44): e2313825120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871217

RESUMO

Lipoprotein lipase (LPL), the enzyme that carries out the lipolytic processing of triglyceride-rich lipoproteins (TRLs), is synthesized by adipocytes and myocytes and secreted into the interstitial spaces. The LPL is then bound by GPIHBP1, a GPI-anchored protein of endothelial cells (ECs), and transported across ECs to the capillary lumen. The assumption has been that the LPL that is moved into capillaries remains attached to GPIHBP1 and that GPIHBP1 serves as a platform for TRL processing. In the current studies, we examined the validity of that assumption. We found that an LPL-specific monoclonal antibody (mAb), 88B8, which lacks the ability to detect GPIHBP1-bound LPL, binds avidly to LPL within capillaries. We further demonstrated, by confocal microscopy, immunogold electron microscopy, and nanoscale secondary ion mass spectrometry analyses, that the LPL detected by mAb 88B8 is located within the EC glycocalyx, distant from the GPIHBP1 on the EC plasma membrane. The LPL within the glycocalyx mediates the margination of TRLs along capillaries and is active in TRL processing, resulting in the delivery of lipoprotein-derived lipids to immediately adjacent parenchymal cells. Thus, the LPL that GPIHBP1 transports into capillaries can detach and move into the EC glycocalyx, where it functions in the intravascular processing of TRLs.


Assuntos
Lipase Lipoproteica , Receptores de Lipoproteínas , Anticorpos Monoclonais/metabolismo , Capilares/metabolismo , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Lipase Lipoproteica/metabolismo , Lipoproteínas/metabolismo , Receptores de Lipoproteínas/metabolismo , Triglicerídeos/metabolismo , Humanos , Animais
3.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37824203

RESUMO

Why apolipoprotein AV (APOA5) deficiency causes hypertriglyceridemia has remained unclear, but we have suspected that the underlying cause is reduced amounts of lipoprotein lipase (LPL) in capillaries. By routine immunohistochemistry, we observed reduced LPL staining of heart and brown adipose tissue (BAT) capillaries in Apoa5-/- mice. Also, after an intravenous injection of LPL-, CD31-, and GPIHBP1-specific mAbs, the binding of LPL Abs to heart and BAT capillaries (relative to CD31 or GPIHBP1 Abs) was reduced in Apoa5-/- mice. LPL levels in the postheparin plasma were also lower in Apoa5-/- mice. We suspected that a recent biochemical observation - that APOA5 binds to the ANGPTL3/8 complex and suppresses its capacity to inhibit LPL catalytic activity - could be related to the low intracapillary LPL levels in Apoa5-/- mice. We showed that an ANGPTL3/8-specific mAb (IBA490) and APOA5 normalized plasma triglyceride (TG) levels and intracapillary LPL levels in Apoa5-/- mice. We also showed that ANGPTL3/8 detached LPL from heparan sulfate proteoglycans and GPIHBP1 on the surface of cells and that the LPL detachment was blocked by IBA490 and APOA5. Our studies explain the hypertriglyceridemia in Apoa5-/- mice and further illuminate the molecular mechanisms that regulate plasma TG metabolism.


Assuntos
Apolipoproteína A-V , Hipertrigliceridemia , Receptores de Lipoproteínas , Animais , Camundongos , Capilares/metabolismo , Hipertrigliceridemia/genética , Hipertrigliceridemia/metabolismo , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Triglicerídeos/sangue , Apolipoproteína A-V/genética
4.
Nucleus ; 14(1): 2262308, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37754663

RESUMO

The Lmna knockout mouse (Lmna-/-) created by Sullivan and coworkers in 1999 has been widely used to examine lamin A/C function. The knockout allele contains a deletion of Lmna intron 7-exon 11 sequences and was reported to be a null allele. Later, Jahn and coworkers discovered that the mutant allele produces a 54-kDa truncated lamin A and identified, by RT-PCR, a Lmna cDNA containing exon 1-7 + exon 12 sequences. Because exon 12 encodes prelamin A's CaaX motif, the mutant lamin A is assumed to be farnesylated. In the current study, we found that the truncated lamin A in Lmna-/- mouse embryonic fibroblasts (MEFs) was predominantly nucleoplasmic rather than at the nuclear rim, leading us to hypothesize that it was not farnesylated. Our study revealed that the most abundant Lmna transcripts in Lmna-/- MEFs contain exon 1-7 but not exon 12 sequences. Exon 1-7 + exon 12 transcripts were detectable by PCR but in trace amounts. We suspect that these findings explain the nucleoplasmic distribution of the truncated lamin A in Lmna-/- MEFs, and subsequent cell transduction experiments support this suspicion. A truncated lamin A containing exon 1-7 sequence was nucleoplasmic, whereas a lamin A containing exon 1-7 + exon 12 sequences was located along the nuclear rim. Our study explains the nucleoplasmic targeting of truncated lamin A in Lmna-/- MEFs and adds to our understanding of a commonly used strain of Lmna-/- mice.


Assuntos
Fibroblastos , Lamina Tipo A , Animais , Camundongos , Núcleo Celular , Lamina Tipo A/genética , Camundongos Knockout
5.
Proc Natl Acad Sci U S A ; 120(8): e2219833120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787365

RESUMO

Lipoprotein lipase (LPL) is secreted into the interstitial spaces by parenchymal cells and then transported into capillaries by GPIHBP1. LPL carries out the lipolytic processing of triglyceride (TG)-rich lipoproteins (TRLs), but the tissue-specific regulation of LPL is incompletely understood. Plasma levels of TG hydrolase activity after heparin injection are often used to draw inferences about intravascular LPL levels, but the validity of these inferences is unclear. Moreover, plasma TG hydrolase activity levels are not helpful for understanding LPL regulation in specific tissues. Here, we sought to elucidate LPL regulation under thermoneutral conditions (30 °C). To pursue this objective, we developed an antibody-based method to quantify (in a direct fashion) LPL levels inside capillaries. At 30 °C, intracapillary LPL levels fell sharply in brown adipose tissue (BAT) but not heart. The reduced intracapillary LPL levels were accompanied by reduced margination of TRLs along capillaries. ANGPTL4 expression in BAT increased fourfold at 30 °C, suggesting a potential explanation for the lower intracapillary LPL levels. Consistent with that idea, Angptl4 deficiency normalized both LPL levels and TRL margination in BAT at 30 °C. In Gpihbp1-/- mice housed at 30 °C, we observed an ANGPTL4-dependent decrease in LPL levels within the interstitial spaces of BAT, providing in vivo proof that ANGPTL4 regulates LPL levels before LPL transport into capillaries. In conclusion, our studies have illuminated intracapillary LPL regulation under thermoneutral conditions. Our approaches will be useful for defining the impact of genetic variation and metabolic disease on intracapillary LPL levels and TRL processing.


Assuntos
Tecido Adiposo Marrom , Receptores de Lipoproteínas , Animais , Camundongos , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Anticorpos/metabolismo , Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/metabolismo , Temperatura , Triglicerídeos/metabolismo
6.
J Clin Invest ; 132(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35229724

RESUMO

GPIHBP1, an endothelial cell (EC) protein, captures lipoprotein lipase (LPL) within the interstitial spaces (where it is secreted by myocytes and adipocytes) and transports it across ECs to its site of action in the capillary lumen. GPIHBP1's 3-fingered LU domain is required for LPL binding, but the function of its acidic domain (AD) has remained unclear. We created mutant mice lacking the AD and found severe hypertriglyceridemia. As expected, the mutant GPIHBP1 retained the capacity to bind LPL. Unexpectedly, however, most of the GPIHBP1 and LPL in the mutant mice was located on the abluminal surface of ECs (explaining the hypertriglyceridemia). The GPIHBP1-bound LPL was trapped on the abluminal surface of ECs by electrostatic interactions between the large basic patch on the surface of LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the surface of ECs. GPIHBP1 trafficking across ECs in the mutant mice was normalized by disrupting LPL-HSPG electrostatic interactions with either heparin or an AD peptide. Thus, GPIHBP1's AD plays a crucial function in plasma triglyceride metabolism; it sheathes LPL's basic patch on the abluminal surface of ECs, thereby preventing LPL-HSPG interactions and freeing GPIHBP1-LPL complexes to move across ECs to the capillary lumen.


Assuntos
Lipase Lipoproteica , Receptores de Lipoproteínas , Animais , Capilares/metabolismo , Células Endoteliais/metabolismo , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Camundongos , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Eletricidade Estática
7.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34423791

RESUMO

The mutant nuclear lamin protein (progerin) produced in Hutchinson-Gilford progeria syndrome (HGPS) results in loss of arterial smooth muscle cells (SMCs), but the mechanism has been unclear. We found that progerin induces repetitive nuclear membrane (NM) ruptures, DNA damage, and cell death in cultured SMCs. Reducing lamin B1 expression and exposing cells to mechanical stress - to mirror conditions in the aorta - triggered more frequent NM ruptures. Increasing lamin B1 protein levels had the opposite effect, reducing NM ruptures and improving cell survival. Remarkably, raising lamin B1 levels increased nuclear compliance in cells and was able to offset the increased nuclear stiffness caused by progerin. In mice, lamin B1 expression in aortic SMCs is normally very low, and in mice with a targeted HGPS mutation (LmnaG609G), levels of lamin B1 decrease further with age while progerin levels increase. Those observations suggest that NM ruptures might occur in aortic SMCs in vivo. Indeed, studies in LmnaG609G mice identified NM ruptures in aortic SMCs, along with ultrastructural abnormalities in the cell nucleus that preceded SMC loss. Our studies identify NM ruptures in SMCs as likely causes of vascular pathology in HGPS.


Assuntos
Aorta/patologia , Lamina Tipo A/genética , Músculo Liso Vascular/patologia , Membrana Nuclear/patologia , Progéria/patologia , Animais , Aorta/citologia , Modelos Animais de Doenças , Humanos , Lamina Tipo A/metabolismo , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Mutação , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/patologia , Progéria/genética
8.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161290

RESUMO

Defects or deficiencies in nuclear lamins cause pathology in many cell types, and recent studies have implicated nuclear membrane (NM) ruptures as a cause of cell toxicity. We previously observed NM ruptures and progressive cell death in the developing brain of lamin B1-deficient mouse embryos. We also observed frequent NM ruptures and DNA damage in nuclear lamin-deficient fibroblasts. Factors modulating susceptibility to NM ruptures remain unclear, but we noted low levels of LAP2ß, a chromatin-binding inner NM protein, in fibroblasts with NM ruptures. Here, we explored the apparent link between LAP2ß and NM ruptures in nuclear lamin-deficient neurons and fibroblasts, and we tested whether manipulating LAP2ß expression levels would alter NM rupture frequency. In cortical plate neurons of lamin B1-deficient embryos, we observed a strong correlation between low LAP2ß levels and NM ruptures. We also found low LAP2ß levels and frequent NM ruptures in neurons of cultured Lmnb1-/- neurospheres. Reducing LAP2ß expression in Lmnb1-/- neurons with an siRNA markedly increased the NM rupture frequency (without affecting NM rupture duration), whereas increased LAP2ß expression eliminated NM ruptures and reduced DNA damage. Consistent findings were observed in nuclear lamin-deficient fibroblasts. Reduced LAP2ß expression increased NM ruptures, whereas increased LAP2ß expression virtually abolished NM ruptures. Increased LAP2ß expression nearly abolished NM ruptures in cells subjected to mechanical stress (an intervention that increases NM ruptures). Our studies showed that increasing LAP2ß expression bolsters NM integrity in nuclear lamin-deficient cells and markedly reduces NM rupture frequency.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Lamina Tipo B/deficiência , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Membrana Nuclear/metabolismo , Animais , Morte Celular , Diferenciação Celular , Córtex Cerebral/patologia , Dano ao DNA , Embrião de Mamíferos/metabolismo , Lamina Tipo A/deficiência , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Camundongos Knockout , Especificidade de Órgãos
9.
J Lipid Res ; 61(10): 1347-1359, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690595

RESUMO

For three decades, the LPL-specific monoclonal antibody 5D2 has been used to investigate LPL structure/function and intravascular lipolysis. 5D2 has been used to measure LPL levels, block the triglyceride hydrolase activity of LPL, and prevent the propensity of concentrated LPL preparations to form homodimers. Two early studies on the location of the 5D2 epitope reached conflicting conclusions, but the more convincing report suggested that 5D2 binds to a tryptophan (Trp)-rich loop in the carboxyl terminus of LPL. The same loop had been implicated in lipoprotein binding. Using surface plasmon resonance, we showed that 5D2 binds with high affinity to a synthetic LPL peptide containing the Trp-rich loop of human (but not mouse) LPL. We also showed, by both fluorescence and UV resonance Raman spectroscopy, that the Trp-rich loop binds lipids. Finally, we used X-ray crystallography to solve the structure of the Trp-rich peptide bound to a 5D2 Fab fragment. The Trp-rich peptide contains a short α-helix, with two Trps projecting into the antigen recognition site. A proline substitution in the α-helix, found in mouse LPL, is expected to interfere with several hydrogen bonds, explaining why 5D2 cannot bind to mouse LPL.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Lipase Lipoproteica/química , Lipase Lipoproteica/imunologia , Animais , Sítios de Ligação , Humanos , Camundongos , Triptofano
10.
J Lipid Res ; 61(3): 413-421, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31941672

RESUMO

Zinc metallopeptidase STE24 (ZMPSTE24) is essential for the conversion of farnesyl-prelamin A to mature lamin A, a key component of the nuclear lamina. In the absence of ZMPSTE24, farnesyl-prelamin A accumulates in the nucleus and exerts toxicity, causing a variety of disease phenotypes. By ∼4 months of age, both male and female Zmpste24-/- mice manifest a near-complete loss of adipose tissue, but it has never been clear whether this phenotype is a direct consequence of farnesyl-prelamin A toxicity in adipocytes. To address this question, we generated a conditional knockout Zmpste24 allele and used it to create adipocyte-specific Zmpste24-knockout mice. To boost farnesyl-prelamin A levels, we bred in the "prelamin A-only" Lmna allele. Gene expression, immunoblotting, and immunohistochemistry experiments revealed that adipose tissue in these mice had decreased Zmpste24 expression along with strikingly increased accumulation of prelamin A. In male mice, Zmpste24 deficiency in adipocytes was accompanied by modest changes in adipose stores (an 11% decrease in body weight, a 23% decrease in body fat mass, and significantly smaller gonadal and inguinal white adipose depots). No changes in adipose stores were detected in female mice, likely because prelamin A expression in adipose tissue is lower in female mice. Zmpste24 deficiency in adipocytes did not alter the number of macrophages in adipose tissue, nor did it alter plasma levels of glucose, triglycerides, or fatty acids. We conclude that ZMPSTE24 deficiency in adipocytes, and the accompanying accumulation of farnesyl-prelamin A, reduces adipose tissue stores, but only modestly and only in male mice.


Assuntos
Tecido Adiposo/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Tecido Adiposo/química , Alelos , Animais , Núcleo Celular/química , Núcleo Celular/metabolismo , Feminino , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Metaloendopeptidases/deficiência , Metaloendopeptidases/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos
11.
Proc Natl Acad Sci U S A ; 116(51): 25870-25879, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31796586

RESUMO

Deficiencies in either lamin B1 or lamin B2 cause both defective migration of cortical neurons in the developing brain and reduced neuronal survival. The neuronal migration abnormality is explained by a weakened nuclear lamina that interferes with nucleokinesis, a nuclear translocation process required for neuronal migration. In contrast, the explanation for impaired neuronal survival is poorly understood. We hypothesized that the forces imparted on the nucleus during neuronal migration result in nuclear membrane (NM) ruptures, causing interspersion of nuclear and cytoplasmic contents-and ultimately cell death. To test this hypothesis, we bred Lmnb1-deficient mice that express a nuclear-localized fluorescent Cre reporter. Migrating neurons within the cortical plate of E18.5 Lmnb1-deficient embryos exhibited NM ruptures, evident by the escape of the nuclear-localized reporter into the cytoplasm and NM discontinuities by electron microscopy. The NM ruptures were accompanied by DNA damage and cell death. The NM ruptures were not observed in nonmigrating cells within the ventricular zone. NM ruptures, DNA damage, and cell death were also observed in cultured Lmnb1-/- and Lmnb2-/- neurons as they migrated away from neurospheres. To test whether mechanical forces on the cell nucleus are relevant to NM ruptures in migrating neurons, we examined cultured Lmnb1-/- neurons when exposed to external constrictive forces (migration into a field of tightly spaced silicon pillars). As the cells entered the field of pillars, there were frequent NM ruptures, accompanied by DNA damage and cell death.


Assuntos
Morte Celular/fisiologia , Movimento Celular/fisiologia , Lamina Tipo B/metabolismo , Neurônios/metabolismo , Membrana Nuclear/metabolismo , Lâmina Nuclear/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Citoplasma/metabolismo , Dano ao DNA , Regulação da Expressão Gênica , Lamina Tipo B/genética , Camundongos , Camundongos Knockout , Neurônios/citologia , Lâmina Nuclear/genética
12.
Elife ; 82019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31486771

RESUMO

Cultured mouse peritoneal macrophages release large numbers of ~30-nm cholesterol-rich particles. Here, we show that those particles represent fragments of the plasma membrane that are pulled away and left behind during the projection and retraction of filopodia and lamellipodia. Consistent with this finding, the particles are enriched in proteins found in focal adhesions, which attach macrophages to the substrate. The release of particles is abolished by blocking cell movement (either by depolymerizing actin with latrunculin A or by inhibiting myosin II with blebbistatin). Confocal microscopy and NanoSIMS imaging studies revealed that the plasma membrane-derived particles are enriched in 'accessible cholesterol' (a mobile pool of cholesterol detectable with the modified cytolysin ALO-D4) but not in sphingolipid-sequestered cholesterol [a pool detectable with ostreolysin A (OlyA)]. The discovery that macrophages release cholesterol-rich particles during cellular locomotion is likely relevant to cholesterol efflux and could contribute to extracellular cholesterol deposition in atherosclerotic plaques.


Assuntos
Membrana Celular/metabolismo , Movimento Celular , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , Colesterol/análise , Macrófagos Peritoneais/metabolismo , Pseudópodes/metabolismo , Animais , Células Cultivadas , Camundongos , Proteínas/análise
13.
Elife ; 82019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31169500

RESUMO

GPIHBP1, a GPI-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) within the subendothelial spaces and shuttles it to the capillary lumen. GPIHBP1-bound LPL is essential for the margination of triglyceride-rich lipoproteins (TRLs) along capillaries, allowing the lipolytic processing of TRLs to proceed. In peripheral tissues, the intravascular processing of TRLs by the GPIHBP1-LPL complex is crucial for the generation of lipid nutrients for adjacent parenchymal cells. GPIHBP1 is absent from the capillaries of the brain, which uses glucose for fuel; however, GPIHBP1 is expressed in the capillaries of mouse and human gliomas. Importantly, the GPIHBP1 in glioma capillaries captures locally produced LPL. We use NanoSIMS imaging to show that TRLs marginate along glioma capillaries and that there is uptake of TRL-derived lipid nutrients by surrounding glioma cells. Thus, GPIHBP1 expression in gliomas facilitates TRL processing and provides a source of lipid nutrients for glioma cells.


Assuntos
Glioma/metabolismo , Lipoproteínas/metabolismo , Receptores de Lipoproteínas/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Capilares/metabolismo , Isótopos de Carbono/metabolismo , Células Endoteliais/metabolismo , Ácidos Graxos/metabolismo , Glioma/irrigação sanguínea , Glioma/patologia , Glioma/ultraestrutura , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Humanos , Lipase Lipoproteica/metabolismo , Camundongos Endogâmicos C57BL , Triglicerídeos/metabolismo
14.
Proc Natl Acad Sci U S A ; 116(10): 4307-4315, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30765529

RESUMO

The nuclear lamina is an intermediate filament meshwork adjacent to the inner nuclear membrane (INM) that plays a critical role in maintaining nuclear shape and regulating gene expression through chromatin interactions. Studies have demonstrated that A- and B-type lamins, the filamentous proteins that make up the nuclear lamina, form independent but interacting networks. However, whether these lamin subtypes exhibit a distinct spatial organization or whether their organization has any functional consequences is unknown. Using stochastic optical reconstruction microscopy (STORM) our studies reveal that lamin B1 and lamin A/C form concentric but overlapping networks, with lamin B1 forming the outer concentric ring located adjacent to the INM. The more peripheral localization of lamin B1 is mediated by its carboxyl-terminal farnesyl group. Lamin B1 localization is also curvature- and strain-dependent, while the localization of lamin A/C is not. We also show that lamin B1's outer-facing localization stabilizes nuclear shape by restraining outward protrusions of the lamin A/C network. These two findings, that lamin B1 forms an outer concentric ring and that its localization is energy-dependent, are significant as they suggest a distinct model for the nuclear lamina-one that is able to predict its behavior and clarifies the distinct roles of individual nuclear lamin proteins and the consequences of their perturbation.


Assuntos
Lamina Tipo A , Lamina Tipo B , Lâmina Nuclear , Humanos , Núcleo Celular/metabolismo , Células HeLa , Lamina Tipo A/química , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lamina Tipo B/química , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Microscopia , Membrana Nuclear/metabolismo , Lâmina Nuclear/metabolismo
15.
J Lipid Res ; 60(4): 869-879, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30598475

RESUMO

Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1), the protein that shuttles LPL to the capillary lumen, is essential for plasma triglyceride metabolism. When GPIHBP1 is absent, LPL remains stranded within the interstitial spaces and plasma triglyceride hydrolysis is impaired, resulting in severe hypertriglyceridemia. While the functions of GPIHBP1 in intravascular lipolysis are reasonably well understood, no one has yet identified DNA sequences regulating GPIHBP1 expression. In the current studies, we identified an enhancer element located ∼3.6 kb upstream from exon 1 of mouse Gpihbp1. To examine the importance of the enhancer, we used CRISPR/Cas9 genome editing to create mice lacking the enhancer (Gpihbp1Enh/Enh). Removing the enhancer reduced Gpihbp1 expression by >90% in the liver and by ∼50% in heart and brown adipose tissue. The reduced expression of GPIHBP1 was insufficient to prevent LPL from reaching the capillary lumen, and it did not lead to hypertriglyceridemia-even when mice were fed a high-fat diet. Compound heterozygotes (Gpihbp1Enh/- mice) displayed further reductions in Gpihbp1 expression and exhibited partial mislocalization of LPL (increased amounts of LPL within the interstitial spaces of the heart), but the plasma triglyceride levels were not perturbed. The enhancer element that we identified represents the first insight into DNA sequences controlling Gpihbp1 expression.


Assuntos
Tecido Adiposo Marrom/metabolismo , Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/genética , Animais , Sistemas CRISPR-Cas/genética , Cromatina/genética , Coração , Humanos , Camundongos , Camundongos Endogâmicos , Receptores de Lipoproteínas/análise , Receptores de Lipoproteínas/metabolismo , Análise de Sequência de DNA , Triglicerídeos/sangue , Triglicerídeos/metabolismo
16.
Prev Vet Med ; 159: 51-56, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30314790

RESUMO

Pseudorabies (PR), also known as Aujeszky's disease, is a highly contagious disease affecting pigs and a wide range of animals. Pseudorabies is enzootic in many countries. In China, it is a priority animal disease for control and eradication, however the data on disease frequency in intensive pig farms and the information on associated risk factors is inadequate. A cross-sectional study of intensive pig farms (≥350 sows) in Shanghai was conducted to determine herd-level prevalence of PRV and associated risk factors. Following a two-stage random sampling design, a total of 1349 sow serum samples were tested by gpI-ELISA from a total of 91 intensive pig farms in Shanghai. A herd was classified as positive if at least one PRV test-positive sow was present. Information on putative risk/protective factors was collected using questionnaires to pig farm owners or veterinarians. A logistic regression model was built to identify risk/protective factors for herd positivity. The results indicated that the herd-level true prevalence was 67.6% (95% CI:57.0-77.0). In the multivariable logistic regression model using backward stepwise procedure, two risk factors were found to be significantly associated with herd positivity: 'Breeding with introduced sows in the last 12 months' (OR = 3.5, 95%CI:1.2, 10.3) and 'Presence of stray dogs or cats' (OR = 4.0, 95%CI: 1.2, 12.6). The multivariable logistic model fitted the data well. Hosmer-Lemeshow goodness of fit test showed χ2 = 10.86 (df = 8, p = 0.21 > 0.05) and the predictability (area under the ROC curve) was 0.86. This study suggested that PR was highly endemic in intensive pig farms in Shanghai. The risk and protective factors identified in this study could be useful to improve the prevention policy of PR in Shanghai and other areas of China.


Assuntos
Criação de Animais Domésticos/métodos , Pseudorraiva/epidemiologia , Doenças dos Suínos/epidemiologia , Animais , China/epidemiologia , Estudos Transversais , Feminino , Prevalência , Fatores de Risco , Suínos
17.
Biochem Biophys Res Commun ; 504(4): 899-902, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30224066

RESUMO

Heterogeneity in the metabolic properties of adipocytes in white adipose tissue has been well documented. We sought to investigate metabolic heterogeneity in adipocytes of brown adipose tissue (BAT), focusing on heterogeneity in nutrient uptake. To explore the possibility of metabolic heterogeneity in brown adipocytes, we used nanoscale secondary ion mass spectrometry (NanoSIMS) to quantify uptake of lipids in adipocytes interscapular BAT and perivascular adipose tissue (PVAT) after an intravenous injection of triglyceride-rich lipoproteins (TRLs) containing [2H]triglycerides (2H-TRLs). The uptake of deuterated lipids into brown adipocytes was quantified by NanoSIMS. We also examined 13C enrichment in brown adipocytes after administering [13C]glucose or 13C-labeled mixed fatty acids by gastric gavage. The uptake of 2H-TRLs-derived lipids into brown adipocytes was heterogeneous, with 2H enrichment in adjacent adipocytes varying by more than fourfold. We also observed substantial heterogeneity in 13C enrichment in adjacent brown adipocytes after administering [13C]glucose or [13C]fatty acids by gastric gavage. The uptake of nutrients by adjacent brown adipocytes within a single depot is variable, suggesting that there is heterogeneity in the metabolic properties of brown adipocytes.


Assuntos
Adipócitos Marrons/metabolismo , Nutrientes/farmacocinética , Espectrometria de Massa de Íon Secundário/métodos , Animais , Isótopos de Carbono/análise , Ácidos Graxos/farmacocinética , Glucose/farmacocinética , Lipídeos/farmacocinética , Lipoproteínas/administração & dosagem , Lipoproteínas/farmacocinética , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Receptores de Lipoproteínas/genética
18.
Sci Transl Med ; 10(460)2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30257952

RESUMO

Hutchinson-Gilford progeria syndrome is a disorder of premature aging in children caused by de novo mutations in LMNA that lead to the synthesis of an internally truncated form of prelamin A (commonly called progerin). The production of progerin causes multiple disease phenotypes, including an unusual vascular phenotype characterized by the loss of smooth muscle cells in the arterial media and fibrosis of the adventitia. We show that progerin expression, combined with mechanical stress, promotes smooth muscle cell death. Disrupting the linker of the nucleoskeleton and cytoskeleton (LINC) complex in smooth muscle cells ameliorates the toxic effects of progerin on smooth muscle cells and limits the accompanying adventitial fibrosis.


Assuntos
Doenças da Aorta/complicações , Complexos Multiproteicos/metabolismo , Miócitos de Músculo Liso/metabolismo , Progéria/complicações , Progéria/metabolismo , Túnica Adventícia/metabolismo , Túnica Adventícia/patologia , Animais , Aorta/metabolismo , Aorta/patologia , Morte Celular , Células Cultivadas , Colágeno Tipo VIII/biossíntese , Modelos Animais de Doenças , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Camundongos , Miócitos de Músculo Liso/ultraestrutura , Fenótipo
19.
Proc Natl Acad Sci U S A ; 115(40): 10100-10105, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224463

RESUMO

The nuclear lamina, an intermediate filament meshwork lining the inner nuclear membrane, is formed by the nuclear lamins (lamins A, C, B1, and B2). Defects or deficiencies in individual nuclear lamin proteins have been reported to elicit nuclear blebs (protrusions or outpouchings of the nuclear envelope) and increase susceptibility for nuclear membrane ruptures. It is unclear, however, how a complete absence of nuclear lamins would affect nuclear envelope morphology and nuclear membrane integrity (i.e., whether nuclear membrane blebs or protrusions would occur and, if not, whether cells would be susceptible to nuclear membrane ruptures). To address these issues, we generated mouse embryonic fibroblasts (MEFs) lacking all nuclear lamins. The nuclear lamin-deficient MEFs had irregular nuclear shapes but no nuclear blebs or protrusions. Despite a virtual absence of nuclear blebs, MEFs lacking nuclear lamins had frequent, prolonged, and occasionally nonhealing nuclear membrane ruptures. By transmission electron microscopy, the inner nuclear membrane in nuclear lamin-deficient MEFs have a "wavy" appearance, and there were discrete discontinuities in the inner and outer nuclear membranes. Nuclear membrane ruptures were accompanied by a large increase in DNA damage, as judged by γ-H2AX foci. Mechanical stress increased both nuclear membrane ruptures and DNA damage, whereas minimizing transmission of cytoskeletal forces to the nucleus had the opposite effects.


Assuntos
Dano ao DNA , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Laminas/deficiência , Membrana Nuclear/metabolismo , Estresse Mecânico , Animais , Embrião de Mamíferos/ultraestrutura , Fibroblastos/ultraestrutura , Camundongos , Camundongos Knockout , Membrana Nuclear/genética , Membrana Nuclear/ultraestrutura
20.
J Lipid Res ; 59(4): 706-713, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29449313

RESUMO

Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1), an endothelial cell protein, binds LPL in the subendothelial spaces and transports it to the capillary lumen. In Gpihbp1-/- mice, LPL remains stranded in the subendothelial spaces, causing hypertriglyceridemia, but how Gpihbp1-/- mice respond to metabolic stress (e.g., cold exposure) has never been studied. In wild-type mice, cold exposure increases LPL-mediated processing of triglyceride-rich lipoproteins (TRLs) in brown adipose tissue (BAT), providing fuel for thermogenesis and leading to lower plasma triglyceride levels. We suspected that defective TRL processing in Gpihbp1-/- mice might impair thermogenesis and blunt the fall in plasma triglyceride levels. Indeed, Gpihbp1-/- mice exhibited cold intolerance, but the effects on plasma triglyceride levels were paradoxical. Rather than falling, the plasma triglyceride levels increased sharply (from ∼4,000 to ∼15,000 mg/dl), likely because fatty acid release by peripheral tissues drives hepatic production of TRLs that cannot be processed. We predicted that the sharp increase in plasma triglyceride levels would not occur in Gpihbp1-/-Angptl4-/- mice, where LPL activity is higher and baseline plasma triglyceride levels are lower. Indeed, the plasma triglyceride levels in Gpihbp1-/-Angptl4-/- mice fell during cold exposure. Metabolic studies revealed increased levels of TRL processing in the BAT of Gpihbp1-/-Angptl4-/- mice.


Assuntos
Temperatura Baixa , Receptores de Lipoproteínas/sangue , Receptores de Lipoproteínas/deficiência , Termogênese , Triglicerídeos/sangue , Animais , Apolipoproteínas B/sangue , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...