Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38527414

RESUMO

This study aimed to investigate the effects of different levels of the protease DE200 on the performance, egg quality, organ index, and cecum microflora of Hy-line W36 laying hens. In this experiment, a total of 180 laying hens aged 300 d were randomly divided into three treatment groups and fed diets containing 0, 100, or 200 g/t DE200. The experimental period was 8 wk, including 2 wk of prefeeding and 6 wk of the formal experiment. Regular feeding was performed thrice a day and eggs were collected twice daily, and the feed intake and the egg quality were recorded. The results showed that in terms of production performance, dietary supplementation with different levels of DE200 significantly increased egg production (EP; P < 0.05) and significantly decreased the feed conversion ratio (FCR; P < 0.05) and average daily feed intake (ADFI; P < 0.05) without affecting egg weight (EW). In addition, the addition of DE200 significantly reduced the egg breakage rate (P < 0.05) and tended to increase the Haugh unit and decrease the water content of the yolk (P > 0.05). In the cecal microflora, the addition of DE200 increased the proportions of Bacteroidetes and Firmicutes at the phylum level while reducing the proportion of Fusobacteria. Furthermore, at the genus level, the addition of DE200 increased the proportions of Bacteroides and Faecalibacterium and reduced the proportion of Megamonas. This study suggested that the protease DE200 can be used as a feed supplement to improve the production performance of laying hens.


In the production of laying hens, improving the efficiency of dietary protein utilization is important. The aim of this study was to investigate the effects of the protease DE200 on the performance, egg quality and cecal microflora of Hyline white laying hens. A total of 180 laying hens aged 300 d were randomly divided into three treatment groups and fed diets containing 0, 100, or 200 g/t DE200 for 56 d. The results showed that supplementation with 100 or 200 g/t DE200 in the basal diet improved the production performance and egg quality of laying hens. DE200 (100 g/t) improved the balance of the cecal microflora, and DE200 (200 g/t) increased the richness and diversity of the cecal microflora of laying hens. Dietary supplementation with DE200 can improve the intestinal health and nutrient utilization efficiency of laying hens by improving the intestinal flora.


Assuntos
Ração Animal , Ceco , Galinhas , Dieta , Suplementos Nutricionais , Ovos , Microbioma Gastrointestinal , Peptídeo Hidrolases , Animais , Galinhas/fisiologia , Galinhas/microbiologia , Feminino , Ceco/microbiologia , Dieta/veterinária , Suplementos Nutricionais/análise , Ração Animal/análise , Peptídeo Hidrolases/metabolismo , Ovos/normas , Distribuição Aleatória , Fenômenos Fisiológicos da Nutrição Animal , Óvulo
2.
Br J Nutr ; 131(8): 1298-1307, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38098370

RESUMO

This study aimed to assess how Bacillus subtilis and Enterococcus faecium co-fermented feed (FF) affects the antioxidant capacity, muscle fibre types and muscle lipid profiles of finishing pigs. In this study, a total of 144 Duroc × Berkshire × Jiaxing Black finishing pigs were randomly assigned into three groups with four replicates (twelve pigs per replication). The three treatments were a basal diet (0 % FF), basal diet + 5 % FF and basal diet + 10 % FF, respectively. The experiment lasted 38 d after 4 d of acclimation. The study revealed that 10 % FF significantly increased the activity of superoxide dismutase (SOD) and catalase (CAT) compared with 0 % FF group, with mRNA levels of up-regulated antioxidant-related genes (GPX1, SOD1, SOD2 and CAT) in 10 % FF group. 10 % FF also significantly up-regulated the percentage of slow-twitch fibre and the mRNA expression of MyHC I, MyHC IIa and MyHC IIx, and slow MyHC protein expression while reducing MyHC IIb mRNA expression. Lipidomics analysis showed that 5 % FF and 10 % FF altered lipid profiles in longissimus thoracis. 10 % FF particularly led to an increase in the percentage of TAG. The Pearson correlation analysis indicated that certain molecular markers such as phosphatidic acid (PA) (49:4), Hex2Cer (d50:6), cardiolipin (CL) (72:8) and phosphatidylcholine (PC) (33:0e) could be used to indicate the characteristics of muscle fibres and were closely related to meat quality. Together, our findings suggest that 10 % FF improved antioxidant capacity, enhanced slow-twitch fibre percentage and altered muscle lipid profiles in finishing pigs.


Assuntos
Antioxidantes , Enterococcus faecium , Suínos , Animais , Antioxidantes/metabolismo , Bacillus subtilis/genética , Enterococcus faecium/genética , Fibras Musculares Esqueléticas/metabolismo , RNA Mensageiro/metabolismo , Lipídeos
3.
BMC Biol ; 21(1): 212, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37807064

RESUMO

BACKGROUND: Obesity, characterized by excessive white adipose tissue expansion, is associated with several metabolic complications. Identifying new adipogenesis regulators may lead to effective therapies for obesity-induced metabolic disorders. RESULTS: Here, we identified the growth arrest and DNA damage-inducible A (GADD45A), a stress-inducible histone-folding protein, as a novel regulator of subcutaneous adipose metabolism. We found that GADD45A expression was positively correlated with subcutaneous fat deposition and obesity in humans and fatty animals. In vitro, the gain or loss function of GADD45A promoted or inhibited subcutaneous adipogenic differentiation and lipid accumulation, respectively. Using a Gadd45a-/- mouse model, we showed that compared to wild-type (WT) mice, knockout (KO) mice exhibited subcutaneous fat browning and resistance to high-fat diet (HFD)-induced obesity. GADD45A deletion also upregulated the expression of mitochondria-related genes. Importantly, we further revealed that the interaction of GADD45A with Stat1 prevented phosphorylation of Stat1, resulting in the impaired expression of Lkb1, thereby regulating subcutaneous adipogenesis and lipid metabolism. CONCLUSIONS: Overall, our results reveal the critical regulatory roles of GADD45A in subcutaneous fat deposition and lipid metabolism. We demonstrate that GADD45A deficiency induces the inguinal white adipose tissue (iWAT) browning and protects mice against HFD-induced obesity. Our findings provide new potential targets for combating obesity-related metabolic diseases and improving human health.


Assuntos
Metabolismo dos Lipídeos , Obesidade , Animais , Humanos , Camundongos , Adipogenia/genética , Tecido Adiposo Branco/metabolismo , Proteínas de Ciclo Celular/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/farmacologia , Gordura Subcutânea/metabolismo
4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37531568

RESUMO

Melatonin has been reported to play crucial roles in regulating meat quality, improving reproductive properties, and maintaining intestinal health in animal production, but whether it regulates skeletal muscle development in weaned piglet is rarely studied. This study was conducted to investigate the effects of melatonin on growth performance, skeletal muscle development, and lipid metabolism in animals by intragastric administration of melatonin solution. Twelve 28-d-old DLY (Duroc × Landrace × Yorkshire) weaned piglets with similar body weight were randomly divided into two groups: control group and melatonin group. The results showed that melatonin supplementation for 23 d had no effect on growth performance, but significantly reduced serum glucose content (P < 0.05). Remarkably, melatonin increased longissimus dorsi muscle (LDM) weight, eye muscle area and decreased the liver weight in weaned piglets (P < 0.05). In addition, the cross-sectional area of muscle fibers was increased (P < 0.05), while triglyceride levels were decreased in LDM and psoas major muscle by melatonin treatment (P < 0.05). Transcriptome sequencing showed melatonin induced the expression of genes related to skeletal muscle hypertrophy and fatty acid oxidation. Enrichment analysis indicated that melatonin regulated cholesterol metabolism, protein digestion and absorption, and mitophagy signaling pathways in muscle. Gene set enrichment analysis also confirmed the effects of melatonin on skeletal muscle development and mitochondrial structure and function. Moreover, quantitative real-time polymerase chain reaction analysis revealed that melatonin supplementation elevated the gene expression of cell differentiation and muscle fiber development, including paired box 7 (PAX7), myogenin (MYOG), myosin heavy chain (MYHC) IIA and MYHC IIB (P < 0.05), which was accompanied by increased insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 5 (IGFBP5) expression in LDM (P < 0.05). Additionally, melatonin regulated lipid metabolism and activated mitochondrial function in muscle by increasing the mRNA abundance of cytochrome c oxidase subunit 6A (COX6A), COX5B, and carnitine palmitoyltransferase 2 (CPT2) and decreasing the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG), acetyl-CoA carboxylase (ACC) and fatty acid-binding protein 4 (FABP4) (P < 0.05). Together, our results suggest that melatonin could promote skeletal muscle growth and muscle fiber hypertrophy, improve mitochondrial function and decrease fat deposition in muscle.


Due to its extensive biological functions, melatonin has been widely used in animal production in recent years. The purpose of this study was to investigate the effects of melatonin on growth performance, muscle development, and lipid metabolism of weaned piglets. Twelve 28-d-old DLY (Duroc × Landrace × Yorkshire) weaned piglets were randomly divided into two groups: control group and melatonin group. The results showed that melatonin supplementation daily had no effect on growth performance, but increased muscle weight, eye muscle area, and decreased the liver weight in weaned piglets. Consistently, the cross-sectional area of myofiber increased, while triglyceride levels decreased in muscle. Melatonin induced the expression of genes related to skeletal muscle hypertrophy and fatty acid oxidation in muscle through transcriptome sequencing. Additionally, melatonin regulated cholesterol metabolism, protein digestion and absorption, and mitophagy signaling pathways in muscle. Gene set enrichment analysis also confirmed the effects of melatonin on skeletal muscle development and mitochondrial function. Moreover, melatonin supplementation elevated the gene expression of cell differentiation and muscle fiber development. Additionally, melatonin inhibited the mRNA expression related to fat synthesis while improved mitochondrial function in muscle. Together, our results suggest melatonin could promote skeletal muscle growth and muscle fiber hypertrophy, enhance mitochondrial function and decrease fat deposition in muscle.


Assuntos
Melatonina , Doenças dos Suínos , Animais , Suínos , Metabolismo dos Lipídeos , Melatonina/farmacologia , Melatonina/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/fisiologia , RNA Mensageiro/genética , Suplementos Nutricionais , Hipertrofia/veterinária , Doenças dos Suínos/metabolismo
5.
Compr Rev Food Sci Food Saf ; 22(5): 3951-3983, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37421323

RESUMO

Deoxynivalenol (DON) is one of the main types of B trichothecenes, and it causes health-related issues in humans and animals and imposes considerable challenges to food and feed safety globally each year. This review investigates the global hazards of DON, describes the occurrence of DON in food and feed in different countries, and systematically uncovers the mechanisms of the various toxic effects of DON. For DON pollution, many treatments have been reported on the degradation of DON, and each of the treatments has different degradation efficacies and degrades DON by a distinct mechanism. These treatments include physical, chemical, and biological methods and mitigation strategies. Biodegradation methods include microorganisms, enzymes, and biological antifungal agents, which are of great research significance in food processing because of their high efficiency, low environmental hazards, and drug resistance. And we also reviewed the mechanisms of biodegradation methods of DON, the adsorption and antagonism effects of microorganisms, and the different chemical transformation mechanisms of enzymes. Moreover, nutritional mitigation including common nutrients (amino acids, fatty acids, vitamins, and microelements) and plant extracts was discussed in this review, and the mitigation mechanism of DON toxicity was elaborated from the biochemical point of view. These findings help explore various approaches to achieve the best efficiency and applicability, overcome DON pollution worldwide, ensure the sustainability and safety of food processing, and explore potential therapeutic options with the ability to reduce the deleterious effects of DON in humans and animals.


Assuntos
Contaminação de Alimentos , Tricotecenos , Humanos , Animais , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Tricotecenos/metabolismo , Manipulação de Alimentos/métodos
6.
Meat Sci ; 201: 109177, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37023593

RESUMO

This study aimed to determine the effects of fermented mixed feed (FMF) supplementation (0%, 5% and 10%) on the intestinal microbial community and metabolism, and the compositions of volatile flavor compounds and inosine monophosphate (IMP) contents in the longissimus thoracis. In this study, 144 finishing pigs (Duroc × Berkshire × Jiaxing Black) were randomly allocated to 3 groups with 4 replicate pens per group and 12 pigs per pen. The experiment lasted 38 days after 4 days of acclimation. The 16S rRNA gene sequences and an untargeted metabolomics analysis showed FMF altered the profiles of microbes and metabolites in the colon. Heracles flash GC e-nose analysis showed that 10% FMF (treatment 3) had a greater influence on the compositions of volatile flavor compounds than 5% FMF (treatment 2). Compared to 0% FMF (treatment 1), the contents of total aldehydes, (E,E)-2,4-nonadienal, dodecanal, nonanal and 2-decenal were significantly increased by treatment 3, and treatment 3 increased IMP concentrations and gene expressions related to its synthesis. Correlations analysis showed significantly different microbes and metabolites had strong correlations with the contents of IMP and volatile flavor compounds. In conclusion, treatment 3 regulated intestinal microbial community and metabolism, that in turn altered the compositions of volatile compounds, which contributed to improving pork flavor and umami.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Metabolômica , RNA Ribossômico 16S/genética , Suínos
7.
Anim Nutr ; 12: 87-95, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36632618

RESUMO

This study was conducted to investigate the effects of fermented mixed feed (FMF) on growth performance, carcass traits, meat quality, muscle amino acid and fatty acid composition and mRNA expression levels of genes related to lipid metabolism in finishing pigs. In the present study, 144 finishing pigs (Duroc × Berkshire × Jiaxing Black) were randomly allocated to 3 dietary treatments with 4 replicate pens per group and 12 pigs per pen. The dietary treatments included a basal diet (CON), a basal diet + 5% FMF and a basal diet + 10% FMF. The experiment lasted 38 d after 4 d of acclimation. The results showed that 5% and 10% FMF significantly increased the average daily gain (ADG) of the females but not the males (P < 0.05), but FMF supplementation showed no impact on carcass traits. Moreover, 10% FMF supplementation increased the meat color45 min and meat color24 h values, while it decreased the shear force relative to CON (P < 0.05). In addition, 10% FMF significantly increased the contents of flavor amino acids (FAA), total essential AA (EAA), total non-EAA (NEAA) and total AA relative to CON (P < 0.05). Furthermore, the diet supplemented with 10% FMF significantly increased the concentration of n-3 polyunsaturated fatty acids (PUFA), n-6 PUFA and total PUFA, and the PUFA to saturated fatty acids ratio (P < 0.05), suggesting that FMF supplementation increased meat quality. Moreover, compared with the CON, 10% FMF supplementation increased the mRNA expression of lipogenic genes, including CEBPα, PPARγ, SREBP1 and FABP4, and upregulated the expression of unsaturated fatty acid synthesis (ACAA1 and FADS2). Together, our results suggest that 10% FMF dietary supplementation improved the female pigs' growth performance, improved the meat quality and altered the profiles of muscle fatty acids and amino acids in finishing pigs. This study provides a reference for the production of high-quality pork.

8.
J Cachexia Sarcopenia Muscle ; 14(1): 326-341, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36511343

RESUMO

BACKGROUND: Skeletal muscle fat infiltration is a common feature during ageing, obesity and several myopathies associated with muscular dysfunction and sarcopenia. However, the regulatory mechanisms of intramuscular adipogenesis and strategies to reduce fat infiltration in muscle remain unclear. Here, we identified the growth arrest and DNA damage-inducible alpha (GADD45A), a stress-inducible histone folding protein, as a critical regulator of intramuscular fat (IMAT) infiltration. METHODS: To explore the role of GADD45A on IMAT infiltration and muscle regeneration, the gain or loss function of GADD45A in intramuscular preadipocytes was performed. The adipocyte-specific GADD45A knock-in (KI) mice and high IMAT-infiltrated muscle model by glycerol injection (50 µL of 50% v/v GLY) were generated. RNA-sequencing, histological changes, gene expression, lipid metabolism, mitochondrial function and the effect of dietary factor epigallocatechin-3-gallate (EGCG) treatment (100 mg/kg) on IMAT infiltration were studied. RESULTS: The unbiased transcriptomics data analysis indicated that GADD45A expression positively correlates with IMAT infiltration and muscle metabolic disorders in humans (correlation: young vs. aged people, Gadd45a and Cebpa, r2  = 0.20, P < 0.05) and animals (correlation: wild-type [WT] vs. mdx mice, Gadd45a and Cebpa, r2  = 0.38, P < 0.05; NaCl vs. GLY mice, Gadd45a and Adipoq/Fabp4, r2  = 0.80/0.71, both P < 0.0001). In vitro, GADD45A overexpression promotes intramuscular preadipocyte adipogenesis, upregulating the expression of adipogenic genes (Ppara: +47%, Adipoq: +28%, P < 0.001; Cebpa: +135%, Fabp4: +16%, P < 0.01; Pparg: +66%, Leptin: +77%, P < 0.05). GADD45A knockdown robustly decreased lipid accumulation (Pparg: -57%, Adipoq: -35%, P < 0.001; Fabp4: -37%, P < 0.01; Leptin: -28%, P < 0.05). GADD45A KI mice exhibit inhibited skeletal muscle regeneration (myofibres: -40%, P < 0.01) and enhanced IMAT infiltration (adipocytes: +20%, P < 0.05). These KI mice have impaired exercise endurance and mitochondrial function. Mechanistically, GADD45A affects ATP synthase F1 subunit alpha (ATP5A1) ubiquitination degradation (ubiquitinated ATP5A1, P < 0.001) by recruiting the E3 ubiquitin ligase TRIM25, which decreases ATP synthesis (ATP production: -23%, P < 0.01) and inactivates the cAMP/PKA/LKB1 signalling pathway (cAMP: -36%, P < 0.01; decreased phospho-PKA and phospho-LKB1 protein content, P < 0.01). The dietary factor EGCG can protect against muscle fat infiltration (triglyceride: -64%, P < 0.05) via downregulating GADD45A (decreased GADD45A protein content, P < 0.001). CONCLUSIONS: Our findings reveal a crucial role of GADD45A in regulating muscle repair and fat infiltration and suggest that inhibition of GADD45A by EGCG might be a potential strategy to combat fat infiltration and its associated muscle dysfunction.


Assuntos
Leptina , PPAR gama , Idoso , Animais , Humanos , Camundongos , Trifosfato de Adenosina , Dano ao DNA , Camundongos Endogâmicos mdx , Músculos/metabolismo , PPAR gama/metabolismo
9.
Research (Wash D C) ; 6: 0268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38434240

RESUMO

Brown adipose tissue (BAT) is the major site of non-shivering thermogenesis and crucial for systemic metabolism. Under chronic cold exposures and high-fat diet challenges, BAT undergoes robust remodeling to adapt to physiological demands. However, whether and how BAT regenerates after acute injuries are poorly understood. Here, we established a novel BAT injury and regeneration model (BAT-IR) in mice and performed single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq to determine cellular and transcriptomic dynamics during BAT-IR. We further defined distinct fibro-adipogenic and myeloid progenitor populations contributing to BAT regeneration. Cell trajectory and gene expression analyses uncovered the involvement of MAPK, Wnt, and Hedgehog (Hh) signaling pathways in BAT regeneration. We confirmed the role of Hh signaling in BAT development through Myf5Cre-mediated conditional knockout (cKO) of the Sufu gene to activate Hh signaling in BAT and muscle progenitors. Our BAT-IR model therefore provides a paradigm to identify conserved cellular and molecular mechanisms underlying BAT development and remodeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...