Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 50(5): 363-377, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36949582

RESUMO

Mesembryanthemum crystallinum L. (ice plant) develops salt tolerance during the transition from the juvenile to the adult stage through progressive morphological, physiological, biochemical, and molecular changes. Myo -inositol is the precursor for the synthesis of compatible solute D-pinitol and promotes Na+ transport in ice plants. We previously showed that supplying myo -inositol to 9-day-old seedlings alleviates salt damage by coordinating the expression of genes involved in inositol synthesis and transport, affecting osmotic adjustment and the Na/K balance. In this study, we examined the effects of myo -inositol on physiological parameters and inositol-related gene expression in early- and late-stage juvenile plants. The addition of myo -inositol to salt-treated, hydroponically grown late juvenile plants had no significant effects on growth or photosynthesis. In contrast, supplying exogenous myo -inositol to salt-treated early juvenile plants increased leaf biomass, relative water content, and chlorophyll content and improved PSII activity and CO2 assimilation. The treatment combining high salt and myo -inositol synergistically induced the expression of myo -inositol phosphate synthase (INPS ), myo -inositol O -methyltransferase (IMT ), and inositol transporters (INTs ), which modulated root-to-shoot Na/K ratio and increased leaf D-pinitol content. The results indicate that sufficient myo -inositol is a prerequisite for high salt tolerance in ice plant.


Assuntos
Mesembryanthemum , Plantas Tolerantes a Sal , Plantas Tolerantes a Sal/metabolismo , Mesembryanthemum/genética , Mesembryanthemum/metabolismo , Tolerância ao Sal , Inositol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...