Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(1): 281-289, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32697379

RESUMO

Amplified spontaneous emission (ASE) is intrinsically associated with lasing applications. Inefficient photon energy transfer to ASE is a long-standing issue for organic semiconductors that consist of multiple competing radiative decay pathways, far from being rationally regulated from the perspective of molecular arrangements. Herein, we achieve controllable molecular packing motifs by halogen-bonded cocrystallization, leading to ten times increased radiative decay rate, four times larger ASE radiative decay selectivity and thus remarkable ASE threshold decrease from 223 to 22 µJ cm-2 , albeit with a low photoluminescence quantum yield. We have made an in-depth investigation on the relationship among molecular arrangements, vibration modes, radiative decay profiles and ASE properties. The results suggest that cocrystallization presents a powerful approach to tailor the radiative decay pathways, which is fundamentally important to the development of organic ASE and lasing materials.

2.
J Phys Chem Lett ; 11(7): 2585-2591, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32163716

RESUMO

The separation of charge-transfer states into free charges at the donor/acceptor (D/A) interfaces plays a central role in organic solar cells (OSCs). Because of strong Coulomb attraction, the separation mechanisms are elusive, particularly for the high-efficiency non-fullerene (NF) OSCs with low exciton-dissociation driving forces. Here, we demonstrate that the Coulomb barriers can be substantially overcome by electronic polarization for OSCs based on a series of A-D-A acceptors (ITIC, IT-4F, and Y6). In contrast to fullerene-based D/A heterojunctions, the polarization energies for both donor holes and acceptor electrons are remarkably increased from the interfaces to pure regions in the NF heterojunctions because of strong stabilization on electrons but destabilization on holes by electrostatic interactions in the A-D-A acceptors. In particular, upon incorporation of fluorine substituents and electron-poor cores into ITIC, the increased polarization energies can completely compensate for the Coulomb attraction in the IT-4F- and Y6-based heterojunctions, leading to barrierless charge separation.

3.
J Phys Chem Lett ; 10(17): 4888-4894, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31402673

RESUMO

Because of strong exciton binding energy (Eb), an exciton dissociation process and extra energy losses are present in organic solar cells relative to inorganic and perovskite solar cells. Here, we calculated the Eb of a series of small molecule acceptors in solid crystals by a self-consistent quantum mechanics/embedded charge approach. The results show that the Eb values are substantially reduced from the gas phase to solid state because of electronic polarization (mainly from the induction effect of charges). Moreover, in contrast to little changes in the gas phase, the Eb in the solid state can vary significantly, indicating an important molecular packing effect. Remarkably, an extremely weak Eb of 0.04 eV is achieved in a three-dimensional packing crystal, which is comparable to the Eb of organo-lead trihalide perovskites. This work underlines the importance of three-dimensional molecular packing for achieving small Eb and will be helpful in reducing energy losses in organic solar cells.

4.
J Am Chem Soc ; 141(16): 6561-6568, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30810311

RESUMO

Continuous band structure tuning, e.g., doping with different atoms, is one of the most important features of inorganic semiconductors. However, this can hardly be realized in organic semicondutors. Here, we report the first example of fine-tuning organic semiconductor band structures by alloying structurally similar derivatives into one single phase. By incorporating halogen atoms on different positions of the backbone, BDOPV derivatives with complementary intramolecular or intermolecular charge distributions were obtained. To maximize the Coloumbic attractive interactions and minimize repulsive interactions, they form antiparallel cofacial stacking in monocomponent or in alloy single crystals, resulting in efficient π orbital overlap. Benefiting from self-assembly induced solid state "olefin metathesis" reaction, it was observed, for the first time, that three BDOPV derivatives cocrystallized in one single crystal. Molecules with different energy levels serve like the dopants in inorganic semiconductors. Consequently, as the total number of halogen atoms increased, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of the alloy single crystals decreased monotonously in the range from -5.94 to -6.96 eV and -4.19 to -4.48 eV, respectively.

5.
J Am Chem Soc ; 141(1): 48-52, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30569704

RESUMO

The synthesis of graphdiyne with an ordered internal structure is highly attractive for its various scientific and application investigations. We reported herein a rational method to fabricate a graphdiyne analogue with the help of supramolecular chemistry. The introduction of π-π/CH-π interactions controlled the conformations of the precursors and afforded multilayer graphdiyne analogue Ben-GDY through the wet chemical method. The in-plane periodicity of the multilayer Ben-GDY was corroborated by transmission electron microscopy and selected area electron diffraction, which showed a pattern well matched with ABC-style stacking.

6.
J Am Chem Soc ; 140(45): 15153-15156, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30207157

RESUMO

Highly crystalline films of a silver-based coordination polymer, [Ag5(C6S6)] n (Ag-BHT, BHT = benzenehexathiol), have been prepared. The structure of Ag-BHT, solved by combining rotation electron diffraction and powder X-ray diffraction techniques, indicates that it has a lamellar structure with alternatively stacked two-dimensional Ag-S networks and layers composed of one-dimensional metal-dithiolene polymers. In addition, the polycrystalline Ag-BHT film shows high electrical conductivity of up to 250 S·cm-1 at 300 K. The ultraviolet-photoelectron spectroscopy and electronic band structure calculations reveal that this can be attributed to the partially filled valence band and the unique two-dimensional Ag-S networks.

7.
Nat Commun ; 9(1): 2933, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050114

RESUMO

Self-assembly of monolayers of functional molecules on dielectric surfaces is a promising approach for the development of molecular devices proposed in the 1970s. Substrate chemically bonded self-assembled monolayers of semiconducting conjugated molecules exhibit low mobility. And self-assembled monolayer molecular crystals are difficult to scale up and limited to growth on substrates terminated by hydroxyl groups, which makes it difficult to realize sophisticated device functions, particularly for those relying on n-type electron transport, as electrons suffer severe charge trapping on hydroxyl terminated surfaces. Here we report a gravity-assisted, two-dimensional spatial confinement method for bottom-up growth of high-quality n-type single-crystalline monolayers over large, centimeter-sized areas. We demonstrate that by this method, n-type monolayer molecular crystals with high field-effect mobility of 1.24 cm2 V-1 s-1 and band-like transport characteristics can be grown on hydroxyl-free polymer surface. Furthermore, we used these monolayer molecular crystals to realize high-performance crystalline, gate-/light-tunable lateral organic p-n diodes.

8.
Angew Chem Int Ed Engl ; 57(15): 3968-3973, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29397008

RESUMO

Boron-graphdiyne (BGDY), which has a unique π-conjugated structure comprising an sp-hybridized carbon skeleton and evenlydistributed boron heteroatoms in a well-organized 2D molecular plane, is prepared through a bottom-up synthetic strategy. Excellent conductivity, a relatively low band gap and a packing mode of the planar BGDY are observed. Notably, the unusual bonding environment of the all sp-carbon framework and the electron-deficient boron centers generates affinity to metal atoms, and thus provides extra binding sites. Furthermore, the expanded molecule pores of the BGDY molecular plane can also facilitate the transfer of metal ions in the perpendicular direction. The practical effect of the all sp-carbon structure and boron heteroatoms on the properties of BGDY are demonstrated in its performance as the anode in sodium-ion batteries.

9.
Nat Commun ; 8(1): 1172, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079826

RESUMO

Organic electrodes are potential alternatives to current inorganic electrode materials for lithium ion and sodium ion batteries powering portable and wearable electronics, in terms of their mechanical flexibility, function tunability and low cost. However, the low capacity, poor rate performance and rapid capacity degradation impede their practical application. Here, we concentrate on the molecular design for improved conductivity and capacity, and favorable bulk ion transport. Through an in situ cross-coupling reaction of triethynylbenzene on copper foil, the carbon-rich frame hydrogen substituted graphdiyne film is fabricated. The organic film can act as free-standing flexible electrode for both lithium ion and sodium ion batteries, and large reversible capacities of 1050 mAh g-1 for lithium ion batteries and 650 mAh g-1 for sodium ion batteries are achieved. The electrode also shows a superior rate and cycle performances owing to the extended π-conjugated system, and the hierarchical pore bulk with large surface area.

10.
ACS Appl Mater Interfaces ; 9(35): 29744-29752, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28812362

RESUMO

Metal-free catalysts for oxygen reduction reaction (ORR) are the desired materials for low-cost proton exchange membrane fuel cells. Graphdiyne (GDY), a novel type of two-dimensional carbon allotrope, is featured by its sp- and sp2-hybridized carbon atoms, different from the other existing carbon materials. Thus, nitrogen (N) can be doped in new styles by substituting sp-hybridized carbon atoms, effective for ORR, which has been displayed in this study using both experimental and theoretical technologies. The N-doped GDY was synthesized with pyridine and NH3 as N sources successively, expressing an electrocatalytic activity at a potential above 0.8 V similar to that of commercial Pt/C for ORR in alkaline solution and higher stability and better methanol tolerance than those of Pt/C.

11.
Angew Chem Int Ed Engl ; 56(36): 10740-10745, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28691245

RESUMO

Chlorine-substituted graphdiyne (Cl-GDY) is prepared through a Glaser-Hay coupling reaction on the copper foil. Cl-GDY is endowed with a unique π-conjugated carbon skeleton with expanded pore size in two dimensions, having graphdiyne-like sp- and sp2 - hybridized carbon atoms. As a result, the transfer tunnels for lithium (Li) ions in the perpendicular direction of the molecular plane are enlarged. Moreover, benefiting from the bottom-to-up fabrication procedure of graphdiyne and the strong chemical tailorability of the alkinyl-contained monomer, the amount of substitutional chlorine atoms with appropriate electronegativity and atom size is high and evenly distributed on the as-prepared carbon framework, which will synergistically stabilize the Li intercalated in the Cl-GDY framework, and thus generate more Li storage sites. Profiting from the above unique structure, Cl-GDY shows remarkable electrochemical properties in lithium ion half-cells.

12.
ACS Nano ; 11(5): 4866-4876, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28414421

RESUMO

Metal-free catalytic materials have recently received broad attention as promising alternatives to metal-involved catalysts. This is owing to their inherent capability to overcome the inevitable limitations of metal-involved catalysts, such as high sensitivity to poisoning, the limited reserves, high cost and scarcity of metals (especially noble metals), etc. However, the lack of shape-controlled metal-free catalysts with well-defined facets is a formidable bottleneck limiting our understandings on the underlying structure-activity relationship at atomic/molecular level, which thereby restrains their rational design. Here, we report that catalytically active crystals of a porphyrin, 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, could be shaped into well-defined cubes and sheet-like tetradecahedrons (TDHD), which are exclusively and predominantly enclosed by {101} and {001} facets, respectively. Fascinatingly, compared to the cubes, the TDHDs display substantially enhanced catalytic activity toward water decontamination under visible-light irradiation, although both the architectures have identical crystalline structure. We disclose that such interesting shape-sensitive catalytic activity is ascribed to the distinct spatial separation efficiency of photogenerated electrons and holes induced by single-channel and multichannel charge transport pathways along noncovalent supramolecular chains, which are arranged as parallel-aligned and 2D network patterns, respectively. Our findings provide an ideal scientific platform to guide the rational design of next-generation metal-free catalysts of desired catalytic performances.

13.
Nat Commun ; 6: 7408, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26074272

RESUMO

Currently, studies on organic two-dimensional (2D) materials with special optic-electronic properties are attracting great research interest. However, 2D organic systems possessing promising electrical transport properties are still rare. Here a highly crystalline thin film of a copper coordination polymer, Cu-BHT (BHT=benzenehexathiol), is prepared via a liquid-liquid interface reaction between BHT/dichloromethane and copper(II) nitrate/H2O. The morphology and structure characterization reveal that this film is piled up by nanosheets of 2D lattice of [Cu3(C6S6)]n, which is further verified by quantum simulation. Four-probe measurements show that the room temperature conductivity of this material can reach up to 1,580 S cm(-1), which is the highest value ever reported for coordination polymers. Meanwhile, it displays ambipolar charge transport behaviour and extremely high electron and hole mobilities (99 cm(2 )V(-1 )s(-1) for holes and 116 cm(2 )V(-1 )s(-1) for electrons) under field-effect modulation.

14.
Adv Mater ; 27(5): 825-30, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25521073

RESUMO

The first example for thienoacene derivatives with selective growth of different crystal polymorphs is simply achieved by solution-phase self-assembly. Compared with platelet-shaped α-phase crystals, organic field-effect transistors (OFETs) based on microribbon-shaped ß-phase crystals show a hole mobility up to 18.9 cm(2) V(-1) s(-1), which is one of the highest values for p-type organic semiconductors measured under ambient conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...