Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 452: 131252, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36963191

RESUMO

To reveal the fate of anthracene (ANT) in soil, the photodegradation behavior of ANT was systematically studied using SiO2 to simulate a soil environment. Under xenon lamp irradiation, more than 90% of ANT loaded on SiO2 could be removed after 240 min. Moreover, the effects of water content, chloride ions (Cl-) and humic acid (HA) were examined. It was found that the presence of water and HA can significantly inhibit the photolysis of ANT on SiO2, while the addition of chloride alone has no obvious effect. However, when water is present, the inhibition effect of chloride became more obvious. According to radical quenching experiments and electron paramagnetic resonance (EPR) spectra, hydroxyl radicals (•OH) and chlorine radicals (Cl•) were formed in the system. Possible reaction pathways were speculated based on products identified by mass spectrometry. ANT was attacked by •OH to form hydroxylated products, which can be further hydroxylated and oxidized with the final formation of ring-opening products. ANT directly excited by light may also react with Cl• to produce chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs). Finally, the experimental results were verified on real soil. This study provides important information for understanding the photochemical transformation mechanism of ANT at the soil/air interface.

2.
Water Res ; 222: 118953, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964513

RESUMO

This work systematically examined the capability of ferrate (Fe(VI)) for ammonia oxidation, revealing for the first time that bromide ions (Br-) played an important role in promoting the removal of ammonia in Fe(VI) system. In the presence of 10.0 mM Br-, the removal efficiency of ammonia was nearly 3.4 times that of the control, and 1.0 mM ammonia was almost completely removed after two rounds addition of 1.0 mM Fe(VI) in 60 min. PMSO probe test, electron paramagnetic resonance spectra and radical quenching experiments were employed to interpret the underlying promotion mechanism of Br-, and it was proposed that the formation of active bromine (HOBr/OBr-) played a dominant role in the enhanced oxidative removal of ammonia by Fe(VI). Further kinetic model simulations revealed that HOBr/OBr- and Fe(VI) were the two major reactive species in Fe(VI)/Br- system, accounting for 66.7% and 33.0% of ammonia removal, respectively. As the target contaminant, ammonia could quickly consume the generated HOBr/OBr-, thereby suppressing the formation of brominated disinfection byproducts. Finally, NO3- was identified as the dominant transformation product of ammonia, and density functional theory (DFT) calculations revealed that six reaction stages were involved in ammonia oxidation with the first step as the rate-limiting step. This work would enable the full use of coexisting bromides for effective removal of ammonia from natural waters or wastewaters by in situ Fe(VI) oxidation method.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Amônia , Brometos , Bromo , Cinética , Oxirredução , Poluentes Químicos da Água/análise
3.
Chemosphere ; 295: 133907, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35151701

RESUMO

As one of the first batch of persistent organic pollutants (POPs) included in Stockholm Convention, hexachlorobenzene (HCB) has attracted great attention because of its wide occurrence and great environmental risks. Considering the easy adsorption of HCB on solids and the complexity of natural particles, we systematically investigated the photodegradation of HCB on the surface of silica gel (SG) in aqueous solution in this work to reveal its fate in natural waters. Under mercury lamp irradiation, more than 90% of HCB loaded on SG could be removed after 240 min. Moreover, the effects of solution pH and water constituents were examined, and results showed that the presence of NO2-, NO3-, Fe3+ and humic acid (HA) significantly inhibited the reaction due to the scavenging of ROS and/or competitive absorption of light. According to radical quenching experiments and electron paramagnetic resonance (EPR) spectra, hydroxyl radicals and singlet oxygen generated on the surface of SG could participate in the transformation of HCB, but •OH played a dominant role. Based on products identified by high performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS), two main pathways were proposed for the removal of HCB, including dechlorination and hydroxylation which represent direct and indirect photodegradation, respectively, and the occurrence of these two reactions was further supported by density functional theory (DFT) calculations. From the quantitative analysis of penta-chlorobenzene, it was estimated that dechlorination and hydroxylation contributed to approximately 44.4% and 55.6% of initial HCB degradation, respectively. Furthermore, toxicity predictions by the ecological structure-activity relationship model (ECOSAR) suggested that the toxicity of HCB was decreased in the photodegradation process. This study would provide important information for understanding the photochemical transformation mechanism of HCB at the solid/water interface.


Assuntos
Hexaclorobenzeno , Água , Hexaclorobenzeno/química , Substâncias Húmicas/análise , Cinética , Fotólise , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...