Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124194

RESUMO

Maize (Zea mays L.) is an essential commodity for global food security and the agricultural economy, particularly in regions such as San Martin, Peru. This study investigated the plant growth-promoting characteristics of native rhizobacteria isolated from maize crops in the San Martin region of Peru with the aim of identifying microorganisms with biotechnological potential. Soil and root samples were collected from maize plants in four productive zones in the region: Lamas, El Dorado, Picota, and Bellavista. The potential of twelve bacterial isolates was evaluated through traits, such as biological nitrogen fixation, indole acetic acid (IAA) production, phosphate solubilization, and siderophore production, and a completely randomized design was used for these assays. A completely randomized block design was employed to assess the effects of bacterial strains and nitrogen doses on maize seedlings. The B3, B5, and NSM3 strains, as well as maize seeds of the yellow hard 'Advanta 9139' variety, were used in this experiment. Two of these isolates, B5 and NSM3, exhibited outstanding characteristics as plant growth promoters; these strains were capable of nitrogen fixation, IAA production (35.65 and 26.94 µg mL-1, respectively), phosphate solubilization (233.91 and 193.31 µg mL-1, respectively), and siderophore production (34.05 and 89.19%, respectively). Furthermore, molecular sequencing identified the NSM3 isolate as belonging to Sporosarcina sp. NSM3 OP861656, while the B5 isolate was identified as Peribacillus sp. B5 OP861655. These strains show promising potential for future use as biofertilizers, which could promote more sustainable agricultural practices in the region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA