Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 64(12): 125012, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31141793

RESUMO

We computed normalized glandular dose (DgN) coefficients for mean glandular dose estimates in contemporary 2D mammography units, taking into account a homogeneous model for the breast which reflects recent literature reports. We developed a Monte Carlo code based on the simulation toolkit GEANT4 ver. 10.00. The breast was modelled as a cylinder with a semi-cylindrical section with a radius of 10 cm, enveloped in a 1.45 mm thick skin layer, as found out in recent reports in the analysis of breast computed tomography clinical scans. The compressed breast thickness was between 3 cm and 8 cm. The DgN coefficients were calculated for monoenergetic x-ray beams between 4.25 keV and 49.25 keV and were fitted with polynomial curves. Polyenergetic DgN coefficients were then computed for spectra obtained for various anode/filter combinations as adopted in routine clinical practice: Mo/Mo 30 µm (25-40 kV), Mo/Rh 25 µm (25-40 kV), Rh/Rh 25 µm (25-40 kV), W/Ag 50 µm (26-34 kV), W/Al 500 µm (26-38 kV), W/Al 700 µm (28-40 kV) and W/Rh 50 µm (24-35 kV). Monoenergetic DgN curve fit coefficients and polyenergetic DgNp coefficients were released for research and clinical work. Polyenergetic DgNp coefficients were 6% higher than those provided in the recent literature, on average. The differences range between -18% and 30%; up to 50% of the computed coefficients differed by less than 10%. The dataset of DgN coefficients are provided as tables for varying glandular fraction by mass and compressed breast thickness. Moreover, a computer code has been developed for generating user specific coefficients DgNp for user defined x-ray spectra up to 49 kV, calculated by spectral weighting from the dataset of monoenergetic DgN coefficients.


Assuntos
Algoritmos , Mama/efeitos da radiação , Mamografia/métodos , Método de Monte Carlo , Mama/diagnóstico por imagem , Mama/patologia , Feminino , Humanos , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos
2.
Phys Med ; 55: 142-148, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30314732

RESUMO

PURPOSE: To provide mean glandular dose (MGD) estimates via Monte Carlo (MC) simulations as a function of the breast models and scan parameters in mammography, digital breast tomosynthesis (DBT) and dedicated breast CT (BCT). METHODS: The MC code was based on GEANT4 toolkit. The simulated compressed breast was either a cylinder with a semi-circular section or ad hoc shaped for oblique view (MLO). In DBT we studied the influence of breast models and exam parameters on the T-factors (i.e. the conversion factor for the calculation of the MGD in DBT from that for a 0-degree projection), and in BCT we investigated the influence on the MGD estimates of the ion chamber volume used for the air kerma measurements. RESULTS: In mammography, a model representative of a breast undergoing an MLO view exam did not produce substantial differences (0.4%) in MGD estimates, when compared to a conventional cranio-caudal (CC) view breast model. The beam half value layer did not present a significant influence on T-factors in DBT (<0.8%), while the skin model presented significant influence on MGD estimates (up to 3.3% at 30 degrees scan angle), increasing for larger scan angles. We derived a correction factor for taking into account the different ion chamber volume used in MGD estimates in BCT. CONCLUSIONS: A series of MC code modules for MGD estimates in 2D and 3D breast imaging have been developed in order to take into account the most recent advances in breast models.


Assuntos
Mama/citologia , Mama/diagnóstico por imagem , Mamografia/métodos , Doses de Radiação , Feminino , Humanos , Mamografia/instrumentação , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...