Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 11(2): 596-610, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36476811

RESUMO

Cancer vaccine immunotherapy facilitates the immune system's recognition of tumor-associated antigens, and the biomolecular design of these vaccines using nanoparticles is one important approach towards obtaining strong anti-tumor responses. Following activation of dendritic cells (DCs), a robust CD8+ T cell-mediated adaptive immune response is critical for tumor elimination. While the role of efficient antigen-presenting myeloid DCs (mDCs) is conventionally attributed towards vaccine efficacy, participation by highly cytokine-producing plasmacytoid DCs (pDCs) is less understood and is often overlooked. We examined vaccines based on the E2 protein nanoparticle platform that delivered encapsulated TLR9 agonist bacterial-like DNA (CpG1826 or CpG1018) or TLR7 agonist viral ssRNA to determine their efficacy over free agonists in activating both mDCs and pDCs for antigen presentation. Although mDCs were only activated by nanoparticle-encapsulated TLR9 agonists, pDCs were activated by all the individually tested constructs, and CpG1826 was shown to induce pDC cytokine production. Transfer of secreted factors from pDCs that were stimulated with a vaccine formulation comprising peptide antigen and CpG1826 enhanced mDC display of the antigen, particularly when delivered in nanoparticles. Only when treated with nanoparticle-conjugated vaccine could pDCs secrete factors to induce antigen display on naïve mDCs. These results reveal that pDCs can aid mDCs, highlighting the importance of activating both pDCs and mDCs in designing effective cancer vaccines, and demonstrate the advantage of using nanoparticle-based vaccine delivery.


Assuntos
Neoplasias , Vacinas , Humanos , Receptor Toll-Like 9/metabolismo , Citocinas/metabolismo , Linfócitos T CD8-Positivos , Neoplasias/metabolismo , Células Dendríticas
2.
Adv Ther (Weinh) ; 3(12)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34141865

RESUMO

Immune checkpoint inhibition is a promising alternative treatment to standard chemotherapies; however, it fails to achieve long-term remission in a significant portion of patients. A previously developed protein nanoparticle-based platform (E2 nanoparticle) delivers cancer antigens to increase antigen-specific tumor responses. While prior work has focussed on prophylactic conditions, the objectives in this study are therapeutic. It is hypothesized that immune checkpoint inhibition, when augmented by antigen delivery using E2 nanoparticles containing CpG oligonucleotide 1826 (CpG) and a glycoprotein 100 (gp100) melanoma antigen epitope (CpG-gp-E2), would synergistically elicit antitumor responses. To identify a regimen primed for obtaining effective treatment results, immune benchmarks in the spleen and tumor are examined. Conditions that lead to significant immune activation, including increases in gp100-specific interferon gamma (IFN-𝜸), CD8 T cells in the spleen, tumor-infiltrating CD8 T cells, and survival time are identified. Based on the findings, the resulting combination of CpG-gp-E2 and anti-programmed cell death protein 1 (anti-PD-1) treatment in tumor-challenged mice yield significantly increased long-term survival; more than 50% of the mice treated with combination therapy were tumor-free, compared with 0% and ≈5% for CpG-gp-E2 and anti-PD-1 alone, respectively. Evidence of a durable antitumor response is also observed upon tumor rechallenge, pointing to long-lasting immune memory.

3.
Biomaterials ; 156: 194-203, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29202325

RESUMO

Nanoparticles have attracted considerable interest as cancer vaccine delivery vehicles for inducing sufficient CD8+ T cell-mediated immune responses to overcome the low immunogenicity of the tumor microenvironment. Our studies described here are the first to examine the effects of clinically-tested human cancer-testis (CT) peptide epitopes within a synthetic nanoparticle. Specifically, we focused on two significant clinical CT targets, the HLA-A2 restricted epitopes of NY-ESO-1 and MAGE-A3, using a viral-mimetic packaging strategy. Our data shows that simultaneous delivery of a NY-ESO-1 epitope (SLLMWITQV) and CpG using the E2 subunit assembly of pyruvate dehydrogenase (E2 nanoparticle), resulted in a 25-fold increase in specific IFN-γ secretion in HLA-A2 transgenic mice. This translated to a 15-fold increase in lytic activity toward target cancer cells expressing the antigen. Immunization with a MAGE-A3 epitope (FLWGPRALV) delivered with CpG in E2 nanoparticles yielded an increase in specific IFN-γ secretion and cell lysis by 6-fold and 9-fold, respectively. Furthermore, combined delivery of NY-ESO-1 and MAGE-A3 antigens in E2 nanoparticles yielded an additive effect that increased lytic activity towards cells bearing NY-ESO-1+ and MAGE-A3+. Our investigations demonstrate that formulation of CT antigens within a nanoparticle can significantly enhance antigen-specific cell-mediated responses, and the combination of the two antigens in a vaccine can preserve the increased individual responses that are observed for each antigen alone.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos de Neoplasias/administração & dosagem , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/química , Imunidade Celular , Nanopartículas/química , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Epitopos/química , Epitopos/imunologia , Humanos , Imunização , Interferon gama/metabolismo , Camundongos Transgênicos , Nanopartículas/ultraestrutura , Oligodesoxirribonucleotídeos/química , Peptídeos/química , Baço/metabolismo
4.
ACS Biomater Sci Eng ; 3(4): 496-501, 2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28989957

RESUMO

Efficient delivery of antigens is of paramount concern in immunotherapies. We aimed to target antigen presenting cells (APCs) by conjugating CpG oligonucleotides to an E2 protein nanoparticle surface (CpG-PEG-E2). Compared to E2 alone, we observed ~4-fold increase of in vitro APC uptake of both CpG-PEG-E2 and E2 conjugated to non-CpG DNA. Furthermore, compared to E2-alone or E2 functionalized solely with polyethylene glycol (PEG), the CpG-PEG-E2 showed enhanced lymph node retention up to at least 48 hr and 2-fold increase in APC uptake in vivo, parameters which are advantageous for vaccine success. This suggests that enhanced APC uptake of nanoparticles mediated by oligonucleotide display may help overcome delivery barriers in vaccine development.

5.
Biomaterials ; 86: 83-91, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26894870

RESUMO

The immune system is a powerful resource for the eradication of cancer, but to overcome the low immunogenicity of tumor cells, a sufficiently strong CD8(+) T cell-mediated adaptive immune response is required. Nanoparticulate biomaterials represent a potentially effective delivery system for cancer vaccines, as they can be designed to mimic viruses, which are potent inducers of cellular immunity. We have been exploring the non-viral pyruvate dehydrogenase E2 protein nanoparticle as a biomimetic platform for cancer vaccine delivery. Simultaneous conjugation of a melanoma-associated gp100 epitope and CpG to the E2 nanoparticle (CpG-gp-E2) yielded an antigen-specific increase in the CD8(+) T cell proliferation index and IFN-γ secretion by 1.5-fold and 5-fold, respectively, compared to an unbound peptide and CpG formulation. Remarkably, a single nanoparticle immunization resulted in a 120-fold increase in the frequency of melanoma epitope-specific CD8(+) T cells in draining lymph nodes and a 30-fold increase in the spleen, relative to free peptide with free CpG. Furthermore, in the very aggressive B16 melanoma murine tumor model, prophylactic immunization with CpG-gp-E2 delayed the onset of tumor growth by approximately 5.5 days and increased animal survival time by approximately 40%, compared to PBS-treated animals. These results show that by combining optimal particle size and simultaneous co-delivery of molecular vaccine components, antigen-specific anti-tumor immune responses can be significantly increased.


Assuntos
Vacinas Anticâncer/uso terapêutico , Ilhas de CpG , Melanoma Experimental/prevenção & controle , Nanopartículas/uso terapêutico , Complexo Piruvato Desidrogenase/uso terapêutico , Antígeno gp100 de Melanoma/uso terapêutico , Animais , Biomimética , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Células Cultivadas , Sistemas de Liberação de Medicamentos , Epitopos/administração & dosagem , Epitopos/imunologia , Epitopos/uso terapêutico , Feminino , Humanos , Imunização , Interferon gama/imunologia , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Complexo Piruvato Desidrogenase/administração & dosagem , Complexo Piruvato Desidrogenase/imunologia , Antígeno gp100 de Melanoma/administração & dosagem , Antígeno gp100 de Melanoma/imunologia
6.
J Immunol ; 193(4): 1812-27, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25024392

RESUMO

Vaccinia virus (VACV) is a useful model system for understanding the immune response to a complex pathogen. Proteome-wide Ab profiling studies reveal the humoral response to be strongly biased toward virion-associated Ags, and several membrane proteins induce Ab-mediated protection against VACV challenge in mice. Some studies have indicated that the CD4 response is also skewed toward proteins with virion association, whereas the CD8 response is more biased toward proteins with early expression. In this study, we have leveraged a VACV strain Western Reserve (VACV-WR) plasmid expression library, produced previously for proteome microarrays for Ab profiling, to make a solubilized full VACV-WR proteome for T cell Ag profiling. Splenocytes from VACV-WR-infected mice were assayed without prior expansion against the soluble proteome in assays for Th1 and Th2 signature cytokines. The response to infection was polarized toward a Th1 response, with the distribution of reactive T cell Ags comprising both early and late VACV proteins. Interestingly, the proportions of different functional subsets were similar to that present in the whole proteome. In contrast, the targets of Abs from the same mice were enriched for membrane and other virion components, as described previously. We conclude that a "nonbiasing" approach to T cell Ag discovery reveals a T cell Ag profile in VACV that is broader and less skewed to virion association than the Ab profile. The T cell Ag mapping method developed in the present study should be applicable to other organisms where expressible "ORFeome" libraries are also available, and it is readily scalable for larger pathogens.


Assuntos
Antígenos Virais/imunologia , Proteoma/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Vaccinia virus/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Imunidade Humoral , Imunização , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Baço/citologia , Células Th1/imunologia , Células Th2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...