Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 380(2226): 20210036, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35527637

RESUMO

Transitional localized turbulence in shear flows is known to either decay to an absorbing laminar state or to proliferate via splitting. The average passage times from one state to the other depend super-exponentially on the Reynolds number and lead to a crossing Reynolds number above which proliferation is more likely than decay. In this paper, we apply a rare-event algorithm, Adaptative Multilevel Splitting, to the deterministic Navier-Stokes equations to study transition paths and estimate large passage times in channel flow more efficiently than direct simulations. We establish a connection with extreme value distributions and show that transition between states is mediated by a regime that is self-similar with the Reynolds number. The super-exponential variation of the passage times is linked to the Reynolds number dependence of the parameters of the extreme value distribution. Finally, motivated by instantons from Large Deviation theory, we show that decay or splitting events approach a most-probable pathway. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 2)'.

2.
Artigo em Inglês | MEDLINE | ID: mdl-25974582

RESUMO

Motivated by studies of the cylinder wake, in which the vortex-shedding frequency can be obtained from the mean flow, we study thermosolutal convection driven by opposing thermal and solutal gradients. In the archetypal two-dimensional geometry with horizontally periodic and vertical no-slip boundary conditions, branches of traveling waves and standing waves are created simultaneously by a Hopf bifurcation. Consistent with similar analyses performed on the cylinder wake, we find that the traveling waves of thermosolutal convection have the RZIF property, meaning that linearization about the mean fields of the traveling waves yields an eigenvalue whose real part is almost zero and whose imaginary part corresponds very closely to the nonlinear frequency. In marked contrast, linearization about the mean field of the standing waves yields neither zero growth nor the nonlinear frequency. It is shown that this difference can be attributed to the fact that the temporal power spectrum for the traveling waves is peaked, while that of the standing waves is broad. We give a general demonstration that the frequency of any quasimonochromatic oscillation can be predicted from its temporal mean.

4.
Artigo em Inglês | MEDLINE | ID: mdl-24032927

RESUMO

Natural convection of air between two infinite vertical differentially heated plates is studied analytically in two dimensions (2D) and numerically in two and three dimensions (3D) for Rayleigh numbers Ra up to 3 times the critical value Ra(c)=5708. The first instability is a supercritical circle pitchfork bifurcation leading to steady 2D corotating rolls. A Ginzburg-Landau equation is derived analytically for the flow around this first bifurcation and compared with results from direct numerical simulation (DNS). In two dimensions, DNS shows that the rolls become unstable via a Hopf bifurcation. As Ra is further increased, the flow becomes quasiperiodic, and then temporally chaotic for a limited range of Rayleigh numbers, beyond which the flow returns to a steady state through a spatial modulation instability. In three dimensions, the rolls instead undergo another pitchfork bifurcation to 3D structures, which consist of transverse rolls connected by counter-rotating vorticity braids. The flow then becomes time dependent through a Hopf bifurcation, as exchanges of energy occur between the rolls and the braids. Chaotic behavior subsequently occurs through two competing mechanisms: a sequence of period-doubling bifurcations leading to intermittency or a spatial pattern modulation reminiscent of the Eckhaus instability.

5.
Phys Rev Lett ; 109(16): 164501, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23215083

RESUMO

A direct numerical simulation of Faraday waves is carried out in a minimal hexagonal domain. Over long times, we observe the alternation of patterns we call quasihexagons and beaded stripes. The symmetries and spatial Fourier spectra of these patterns are analyzed.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(3 Pt 2): 036320, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20365867

RESUMO

Rayleigh-Bénard convection in a cylindrical container can take on many different spatial forms. Motivated by the results of Hof [Phys. Fluids 11, 2815 (1999)], who observed coexistence of several stable states at a single set of parameter values, we have carried out simulations at the same Prandtl number, that of water, and a radius-to-height aspect ratio of two. We have used two kinds of thermal boundary conditions: perfectly insulating sidewalls and perfectly conducting sidewalls. In both cases we obtain a wide variety of coexisting steady and time-dependent flows.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(3 Pt 2): 036322, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20365869

RESUMO

The axisymmetric flow in an aspect-ratio-one cylinder whose upper and lower bounding disks are maintained at different temperatures and rotate at equal and opposite velocities is investigated. In this combined Rayleigh-Bénard/von Kármán problem, the imposed temperature gradient is measured by the Rayleigh number Ra and the angular velocity by the Reynolds number Re. Although fluid motion is present as soon as Re not equal 0 , a symmetry-breaking transition analogous to the onset of convection takes place at a finite Rayleigh number higher than that for Re=0 . For Re<95 , the transition is a pitchfork bifurcation to a pair of steady states, while for Re>95 , it is a Hopf bifurcation to a limit cycle. The steady states and limit cycle are connected via a pair of saddle-node infinite-period bifurcations except very near the Takens-Bogdanov codimension-two point, where the scenario includes global bifurcations. Detailed phase portraits and bifurcation diagrams are presented, as well as the evolution of the leading part of the spectrum, over the parameter ranges 0

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(3 Pt 2): 036321, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20365868

RESUMO

A large number of flows with distinctive patterns have been observed in experiments and simulations of Rayleigh-Bénard convection in a water-filled cylinder whose radius is twice the height. We have adapted a time-dependent pseudospectral code, first, to carry out Newton's method and branch continuation and, second, to carry out the exponential power method and Arnoldi iteration to calculate leading eigenpairs and determine the stability of the steady states. The resulting bifurcation diagram represents a compromise between the tendency in the bulk toward parallel rolls and the requirement imposed by the boundary conditions that primary bifurcations be toward states whose azimuthal dependence is trigonometric. The diagram contains 17 branches of stable and unstable steady states. These can be classified geometrically as roll states containing two, three, and four rolls; axisymmetric patterns with one or two tori; threefold-symmetric patterns called Mercedes, Mitsubishi, marigold, and cloverleaf; trigonometric patterns called dipole and pizza; and less symmetric patterns called CO and asymmetric three rolls. The convective branches are connected to the conductive state and to each other by 16 primary and secondary pitchfork bifurcations and turning points. In order to better understand this complicated bifurcation diagram, we have partitioned it according to azimuthal symmetry. We have been able to determine the bifurcation-theoretic origin from the conductive state of all the branches observed at high Rayleigh number.

9.
Phys Rev Lett ; 105(16): 160405, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21230954

RESUMO

We report the numerical realization of robust two-component structures in 2D and 3D Bose-Einstein condensates with nontrivial topological charge in one component. We identify a stable symbiotic state in which a higher-dimensional bright soliton exists even in a homogeneous setting with defocusing interactions, due to the effective potential created by a stable vortex in the other component. The resulting vortex-bright-solitons, generalizations of the recently experimentally observed dark-bright solitons, are found to be very robust both in the homogeneous medium and in the presence of external confinement.

10.
Phys Rev Lett ; 94(1): 014502, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15698087

RESUMO

Turbulent-laminar patterns near transition are simulated in plane Couette flow using an extension of the minimal-flow-unit methodology. Computational domains are of minimal size in two directions but large in the third. The long direction can be tilted at any prescribed angle to the streamwise direction. Three types of patterned states are found and studied: periodic, localized, and intermittent. These correspond closely to observations in large-aspect-ratio experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...