Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 70(2): 659-670, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35994554

RESUMO

OBJECTIVE: Wireless power transfer (WPT) is used as an alternative to batteries to accomplish miniaturization in electronic medical implants. However, established WPT methods require bulky parts within the implant or cumbersome external systems, hindering minimally invasive deployments and the development of networks of implants. As an alternative, we propose a WPT approach based on volume conduction of high frequency (HF) current bursts. These currents are applied through external electrodes and are collected by the implants through two electrodes at their opposite ends. This approach avoids bulky components, enabling the development of flexible threadlike implants. METHODS: We study in humans if HF (6.78 MHz) current bursts complying with safety standards and applied through two textile electrodes strapped around a limb can provide substantial powers from pairs of implanted electrodes. RESULTS: Time averaged electric powers obtained from needle electrodes (diameter = 0.4 mm, length = 3 mm, separation = 30 mm) inserted into arms and lower legs of five healthy participants were 5.9 ± 0.7 mW and 2.4 ± 0.3 mW respectively. We also characterize the coupling between the external system and the implants using personalized two-port impedance models generated from medical images. CONCLUSIONS: The results demonstrate that innocuous and imperceptible HF current bursts that flow through the tissues by volume conduction can be used to wirelessly power threadlike implants. SIGNIFICANCE: This is the first time that WPT based on volume conduction is demonstrated in humans. This method overcomes the limitations of existing WPT methods in terms of minimal invasiveness and usability.


Assuntos
Eletrônica Médica , Próteses e Implantes , Humanos , Eletrodos Implantados , Fontes de Energia Elétrica , Miniaturização , Tecnologia sem Fio
2.
J Neural Eng ; 19(5)2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36041421

RESUMO

Objective.To develop andin vivodemonstrate threadlike wireless implantable neuromuscular microstimulators that are digitally addressable.Approach.These devices perform, through its two electrodes, electronic rectification of innocuous high frequency current bursts delivered by volume conduction via epidermal textile electrodes. By avoiding the need of large components to obtain electrical energy, this approach allows the development of thin devices that can be intramuscularly implanted by minimally invasive procedures such as injection. For compliance with electrical safety standards, this approach requires a minimum distance, in the order of millimeters or a very few centimeters, between the implant electrodes. Additionally, the devices must cause minimal mechanical damage to tissues, avoid dislocation and be adequate for long-term implantation. Considering these requirements, the implants were conceived as tubular and flexible devices with two electrodes at opposite ends and, at the middle section, a hermetic metallic capsule housing the electronics.Main results.The developed implants have a submillimetric diameter (0.97 mm diameter, 35 mm length) and consist of a microcircuit, which contains a single custom-developed integrated circuit, housed within a titanium capsule (0.7 mm diameter, 6.5 mm length), and two platinum-iridium coils that form two electrodes (3 mm length) located at opposite ends of a silicone body. These neuromuscular stimulators are addressable, allowing to establish a network of microstimulators that can be controlled independently. Their operation was demonstrated in an acute study by injecting a few of them in the hind limb of anesthetized rabbits and inducing controlled and independent contractions.Significance.These results show the feasibility of manufacturing threadlike wireless addressable neuromuscular stimulators by using fabrication techniques and materials well established for chronic electronic implants. Although long-term operation still must be demonstrated, the obtained results pave the way to the clinical development of advanced motor neuroprostheses formed by dense networks of such wireless devices.


Assuntos
Terapia por Estimulação Elétrica , Próteses e Implantes , Animais , Eletrodos Implantados , Eletrônica , Membro Posterior , Coelhos , Tecnologia sem Fio
3.
J Neuroeng Rehabil ; 19(1): 57, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672857

RESUMO

BACKGROUND: Implantable neuroprostheses consisting of a central electronic unit wired to electrodes benefit thousands of patients worldwide. However, they present limitations that restrict their use. Those limitations, which are more adverse in motor neuroprostheses, mostly arise from their bulkiness and the need to perform complex surgical implantation procedures. Alternatively, it has been proposed the development of distributed networks of intramuscular wireless microsensors and microstimulators that communicate with external systems for analyzing neuromuscular activity and performing stimulation or controlling external devices. This paradigm requires the development of miniaturized implants that can be wirelessly powered and operated by an external system. To accomplish this, we propose a wireless power transfer (WPT) and communications approach based on volume conduction of innocuous high frequency (HF) current bursts. The currents are applied through external textile electrodes and are collected by the wireless devices through two electrodes for powering and bidirectional digital communications. As these devices do not require bulky components for obtaining power, they may have a flexible threadlike conformation, facilitating deep implantation by injection. METHODS: We report the design and evaluation of advanced prototypes based on the above approach. The system consists of an external unit, floating semi-implantable devices for sensing and stimulation, and a bidirectional communications protocol. The devices are intended for their future use in acute human trials to demonstrate the distributed paradigm. The technology is assayed in vitro using an agar phantom, and in vivo in hindlimbs of anesthetized rabbits. RESULTS: The semi-implantable devices were able to power and bidirectionally communicate with the external unit. Using 13 commands modulated in innocuous 3 MHz HF current bursts, the external unit configured the sensing and stimulation parameters, and controlled their execution. Raw EMG was successfully acquired by the wireless devices at 1 ksps. CONCLUSIONS: The demonstrated approach overcomes key limitations of existing neuroprostheses, paving the way to the development of distributed flexible threadlike sensors and stimulators. To the best of our knowledge, these devices are the first based on WPT by volume conduction that can work as EMG sensors and as electrical stimulators in a network of wireless devices.


Assuntos
Próteses e Implantes , Tecnologia sem Fio , Animais , Eletrodos , Membro Posterior/fisiologia , Humanos , Coelhos
4.
IEEE Trans Biomed Circuits Syst ; 14(4): 867-878, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32746346

RESUMO

Sensing implants that can be deployed by catheterization or by injection are preferable over implants requiring invasive surgery. However, present powering methods for active implants and present interrogation methods for passive implants require bulky parts within the implants that hinder the development of such minimally invasive devices. In this article, we propose a novel approach that potentially enables the development of passive sensing systems overcoming the limitations of previous implantable sensing systems in terms of miniaturization. In this approach implants are shaped as thread-like devices suitable for implantation by injection. Their basic structure consists of a thin elongated body with two electrodes at opposite ends and a simple and small circuit made up of a diode, a capacitor and a resistor. The interrogation method to obtain measurements from the implants consists in applying innocuous bursts of high frequency (≥1 MHz) alternating current that reach the implants by volume conduction and in capturing and processing the voltage signals that the implants produce after the bursts. As proof-of-concept, and for illustrating how to put in practice this novel approach, here we describe the development and characterization of a system for measuring the conductivity of tissues surrounding the implant. We also describe the implementation and the in vitro validation of a 0.95 mm-thick, flexible injectable implant made of off-the-shelf components. For conductivities ranging from about 0.2 to 0.8 S/m, when compared to a commercial conductivity meter, the accuracy of the implemented system was about ±10%.


Assuntos
Condutividade Elétrica , Miniaturização/instrumentação , Monitorização Fisiológica/instrumentação , Próteses e Implantes , Eletrônica Médica , Humanos , Perna (Membro)/fisiologia , Músculo Esquelético/fisiologia , Desenho de Prótese , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...