Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(14): 3632-3643, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38989523

RESUMO

Turkevich syntheses represent a foundational approach for forming colloids of monodisperse gold nanoparticles where the use of these structures as building blocks when forming multicomponent nanoassemblies is pervasive. The core-satellite motif, which is characterized by a central core structure onto which satellite structures are tethered, distinguishes itself in that it can realize numerous plasmonic nanogaps with nanometer scale widths. Established procedures for assembling these multicomponent structures are, to a large extent, empirically driven, time-consuming, difficult to reproduce, and in need of a strong mechanistic underpinning relating to the close-range electrostatic interactions needed to secure satellite structures onto core materials. Described herein is a rapid, repeatable procedure for assembling core-satellite structures using Turkevich-grown satellites and dithiol linkers. With this successful procedure acting as a baseline for benchmarking modified procedures, a rather complex parameter space is understood in terms of timeline requirements for various processing steps and an analysis of the factors that prove consequential to assembly. It is shown that seemingly innocuous procedures realize sparsely populated cores whereas cores initially obstructed with commonly used capping agents lead to few disruptions to satellite attachment. Once these factors are placed under control, then it is the ionic strength imposed by the reaction biproducts of the Turkevich synthesis that is the critical factor in assembly because they decide the spatial extent of the electrical double layer surrounding each colloidal nanoparticle. With this understanding, it is possible to control the ionic strength through the addition or subtraction of various ionic species and assert control over the assembly process. The work, hence, advances the rules for a robust core-satellite assembly process and, in a broader sense, contributes to the knowhow required for the precise, programmable, and controllable assembly of multicomponent systems.

2.
Nanoscale ; 15(43): 17609-17620, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37876284

RESUMO

Sacrificial templates present an effective pathway for gaining high-level control over nanoscale reaction products. Atomic layer deposition (ALD) is ideally suited for such approaches due to its ability to replicate the surface topography of a template material through the deposition of an ultrathin conformal layer. Herein, metal nanostructures are demonstrated as sacrificial templates for the formation of architecturally complex and deterministically positioned oxide nanoshells, open-topped nanobowls, vertically standing half-shells, and nanorings. The three-step process sees metal nanocrystals formed in periodic arrays, coated with an ALD-deposited oxide, and hollowed out with a selective etch through nanopores formed in the oxide shell. The procedure is further augmented through the use of a directional ion beam that is used to sculpt the oxide shells into bowl- and ring-like configurations. The functionality of the so-formed materials is demonstrated through their use as substrate-confined nanoreactors able to promote the growth and confinement of nanomaterials. Taken together, the work expands the design space for substrate-based nanomaterials, creates a platform for advancing functional surfaces and devices and, from a broader perspective, advances the use of ALD in forming complex nanomaterials.

3.
ACS Nano ; 17(4): 4050-4061, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36799807

RESUMO

Bimetallic Janus nanostructures represent a highly functional class of nanomaterials due to important physicochemical properties stemming from the union of two chemically distinct metal segments where each maintains a partially exposed surface. Essential to their synthesis is the incorporation of a symmetry-breaking control that is able to induce the regioselective deposition of a secondary metal onto a preexisting nanostructure even though such depositions are, more often than not, in opposition to the innate tendencies of heterogeneous growth modes. Numerous symmetry-breaking controls have been forwarded but the ensuing Janus structure syntheses have not yet achieved anywhere near the same level of control over nanostructure size, shape, and composition as their core-shell and single-element counterparts. Herein, a collimated ion beam is demonstrated as a symmetry-breaking control that allows for the selective removal of a passivating oxide shell from one side of a metal nanostructure to create a configuration that is transformable into a substrate-bound Au-Ag Janus nanostructure. Two different modalities are demonstrated for achieving Janus structures where in one case the oxide dissolves in the growth solution while in the other it remains affixed to form a three-component system. The devised procedures distinguish themselves in their ability to realize complex Janus architectures arranged in periodic arrays where each structure has the same alignment relative to the underlying substrate. The work, hence, provides an avenue for forming precisely tailored Janus structures and, in a broader sense, advances the use of oxides as an effective means for directing nanometal syntheses.

4.
Small ; 18(52): e2205780, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344422

RESUMO

The advancement of nanoenabled wafer-based devices requires the establishment of core competencies related to the deterministic positioning of nanometric building blocks over large areas. Within this realm, plasmonic single-crystal gold nanotriangles represent one of the most attractive nanoscale components but where the formation of addressable arrays at scale has heretofore proven impracticable. Herein, a benchtop process is presented for the formation of large-area periodic arrays of gold nanotriangles. The devised growth pathway sees the formation of an array of defect-laden seeds using lithographic and vapor-phase assembly processes followed by their placement in a growth solution promoting planar growth and threefold symmetric side-faceting. The nanotriangles formed in this high-yield synthesis distinguish themselves in that they are epitaxially aligned with the underlying substrate, grown to thicknesses that are not readily obtainable in colloidal syntheses, and present atomically flat pristine surfaces exhibiting gold atoms with a close-packed structure. As such, they express crisp and unambiguous plasmonic modes and form photoactive surfaces with highly tunable and readily modeled plasmon resonances. The devised methods, hence, advance the integration of single-crystal gold nanotriangles into device platforms and provide an overall fabrication strategy that is adaptable to other nanomaterials.


Assuntos
Ouro , Nanoestruturas , Ouro/química , Nanoestruturas/química
5.
ACS Appl Mater Interfaces ; 14(24): 28186-28198, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35695394

RESUMO

The subwavelength confinement of light energy in the nanogaps formed between adjacent plasmonic nanostructures provides the foundational basis for nanophotonic applications. Within this realm, air-filled nanogaps are of central importance because they present a cavity where application-specific nanoscale objects can reside. When forming such configurations on substrate surfaces, there is an inherent difficulty in that the most technologically relevant nanogap widths require closely spaced nanostructures separated by distances that are inaccessible through standard electron-beam lithography techniques. Herein, we demonstrate an assembly route for the fabrication of aligned plasmonic gold trimers with air-filled vertical nanogaps having widths that are defined with spatial controls that exceed those of lithographic processes. The devised procedure uses a sacrificial oxide layer to define the nanogap, a glancing angle deposition to impose a directionality on trimer formation, and a sacrificial antimony layer whose sublimation regulates the gold assembly process. By further implementing a benchtop nanoimprint lithography process and a glancing angle ion milling procedure as additional controls over the assembly, it is possible to deterministically position trimers in periodic arrays and extend the assembly process to dimer formation. The optical response of the structures, which is characterized using polarization-dependent spectroscopy, surface-enhanced Raman scattering, and refractive index sensitivity measurements, shows properties that are consistent with simulation. This work, hence, forwards the wafer-based processing techniques needed to form air-filled nanogaps and place plasmonic energy at site-specific locations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...