Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 324: 116341, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36191501

RESUMO

The usage of disposable face mask to control the spread of COVID-19 disease has led to the alarming generation of a huge amount of plastic waste in a short span of time. On other hand, face masks are made of high-quality thermoplastic polymers that could be recovered and converted into valuable products. The aim of this study is to investigate a complementary approach for the recycling of face mask in lab-scale plants: the mechanical recycling of the filter in polypropylene (PP) and the chemical recycling of the whole face mask. For this purpose, a new designed surgical face mask was chemically and physically characterized. The results shows that the face mask was composed of 92.3 wt% high grade PP (filter), very similar to virgin PP but with a high melt volume index (MVI, 385 cm3/10 min) due to its non-woven manufacturing. The PP from face mask was mixed with recycled virgin PP in order to obtain a MVI suitable for the extrusion process and recycled as filament for 3D printing. This filament was used to print a specimen with a very similar visual quality of that printed with a commercial PP filament. Simultaneously, the whole face mask underwent a pyrolysis process to produce new feedstocks or fuels. Low-cost catalysts derived from coal fly ash (CFA) were employed to enhance the production of light hydrocarbons. In particular, the synthetized acid X zeolite (HX/CFA) improved the yield of light fractions up to 91 wt% (79 wt% for thermal pyrolysis) and the quality of the light oil with the 85% of C6-C10 (55% for thermal pyrolysis). Furthermore, HX/CFA decreased the degradation temperature of PP to 384 °C versus 458 °C of thermal cracking.


Assuntos
COVID-19 , Máscaras , Humanos , Reciclagem , Plásticos , Pirólise , Polipropilenos
2.
Waste Manag ; 112: 1-10, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32474304

RESUMO

The possibility of a pyrolysis process as a mean of recycling the residual plastic rich fraction (WEEE residue) derived from of a material recovery facility has been evaluated. The unknown product composition of WEEE residue has been supposed through coupled thermal - infrared analysis and ultimate analysis and resulted as PP 3 wt%, PBT 3 wt%, PVC 4 wt%, styrene-based polymers (principally ABS) 50 wt%, thermosetting resins (principally, epoxy/phenolic resins) 24 wt%, inorganic fraction (principally fiber glass) 16 wt%. DSC experiments showed that the overall energy, defined as the degradation heat, needed in order to completely degrade WEEE residue was about 4% of the exploitable energy of the input material. The effect of temperature and different zeolite catalysts were investigated, in particular in terms of yield and quality of the produced oils during the pyrolysis process. Produced oils were potentially exploitable as fuels and almost all catalysts improved their quality. The best performance was reached by NaUSY(5.7) with the second highest production of light oil and the greatest total monoaromatics yield, plus 12 wt% in comparison to thermal pyrolysis experiments. Furthermore, light oil produced by NaUSY(5.7) has one of the best LHV (36 MJ/kg) and no halogenated compounds were detected by GC-MS analysis. Char or pyrolytic gas combustion could supply the energy required for the thermal degradation of WEEE Residue.


Assuntos
Resíduo Eletrônico , Plásticos , Poliestirenos , Pirólise , Reciclagem
3.
Materials (Basel) ; 11(2)2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29439383

RESUMO

SiO2-based organic-inorganic hybrids (OIHs) are versatile materials whose properties may change significantly because of their thermal treatment. In fact, after their preparation at low temperature by the sol-gel method, they still have reactive silanol groups due to incomplete condensation reactions that can be removed by accelerating these processes upon heating them in controlled experimental conditions. In this study, the thermal behavior of pure SiO2 and four SiO2-based OIHs containing increasing amount (6, 12, 24 and 50 wt %) of poly(ε-caprolactone) (PCL) has been studied by simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC). The FTIR analysis of the gas mixture evolved at defined temperatures from the samples submitted to the TG experiments identified the mechanisms of thermally activated processes occurring upon heating. In particular, all samples already release ethanol at low temperature. Moreover, thermal degradation of PCL takes place in the richest-PCL sample, leading to 5-hexenoic acid, H2O, CO2, CO and ε-caprolactone. After the samples' treatment at 450, 600 and 1000 °C, the X-ray diffraction (XRD) spectra revealed that they were still amorphous, while the presence of cristobalite is found in the richest-PCL material.

4.
Waste Manag ; 54: 143-52, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27184448

RESUMO

Pyrolysis seems a promising route for recycling of heterogeneous, contaminated and additives containing plastics from waste electrical and electronic equipment (WEEE). This study deals with the thermal and catalytic pyrolysis of a synthetic mixture containing real waste plastics, representative of polymers contained in small WEEE. Two zeolite-based catalysts were used at 400°C: HUSY and HZSM-5 with a high silica content, while three different temperatures were adopted for the thermal cracking: 400, 600 and 800°C. The mass balance showed that the oil produced by pyrolysis is always the main product regardless the process conditions selected, with yields ranging from 83% to 93%. A higher yield was obtained when pyrolysis was carried out with HZSM-5 at 400°C and without catalysts, but at 600 and 800°C. Formation of a significant amount of solid residue (about 13%) is observed using HUSY. The oily liquid product of pyrolysis, analysed by GC-MS and GC-FID, as well as by elemental analysis and for energy content, appeared lighter, less viscous and with a higher concentration of monoaromatics under catalytic condition, if compared to the liquid product derived from thermal degradation at the same temperature. HZSM-5 led to the production of a high yield of styrene (17.5%), while HUSY favoured the formation of ethylbenzene (15%). Energy released by combustion of the oil was around 39MJ/kg, thus suggesting the possibility to exploit it as a fuel, if the recovery of chemical compounds could not be realised. Elemental and proximate analysis of char and GC-TCD analysis of the gas were also performed. Finally, it was estimated to what extent these two products, showing a relevant ability to release energy, could fulfil the energy demand requested in pyrolysis.


Assuntos
Resíduo Eletrônico , Incineração/métodos , Plásticos , Catálise , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...