Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 18(1): 2243064, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37585707

RESUMO

Acute stress responses include release of defensive volatiles from herbivore-attacked plants. Here we used two closely related monocot species, rice as a representative C3 plant, and sorghum as a representative C4 plant, and compared their basal and stress-induced headspace volatile organic compounds (VOCs). Although both plants emitted similar types of constitutive and induced VOCs, in agreement with the close phylogenetic relationship of the species, several mono- and sesquiterpenes have been significantly less abundant in headspace of sorghum relative to rice. Furthermore, in spite of generally lower VOC levels, some compounds, such as the green leaf volatile (Z)-3-hexenyl acetate and homoterpene DMNT, remained relatively high in the sorghum headspace, suggesting that a separate mechanism for dispersal of these compounds may have evolved in this plant. Finally, a variable amount of several VOCs among three sorghum cultivars of different geographical origins suggested that release of VOCs could be used as a valuable resource for the increase of sorghum resistance against herbivores.


This paper shows how genetically related plants with similar volatile toolboxes define their own species identity in the ecological space.


Assuntos
Oryza , Sesquiterpenos , Sorghum , Compostos Orgânicos Voláteis , Herbivoria , Filogenia , Plantas , Compostos Orgânicos Voláteis/farmacologia
2.
Sci Rep ; 12(1): 16647, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198745

RESUMO

The high global bacterial infection burden has created need to investigate the neglected potential drivers of pathogenic bacteria, to inform disease prevention. Kampala is facing a proliferation of herbalists, selling herbal medicine (HM), of largely unregulated microbiological quality. We evaluated the bacterial contamination burden in HM sold in Kampala, to support evidence-based redress. The total viable loads (TVL), total coliform counts (TCC), E. coli counts, and prevalence of selected bacterial strains in 140 HM were examined using conventional culture, following the guidelines of World Health Organization (WHO), and Uganda National Drug Authority (NDA). Data were analyzed using D'Agostino-Pearson test, frequencies, proportions, Chi-square, and Mann-Whitney U test with STATA version-15.0. Fifty (35.7%), fifty-nine (42.1%), and twelve (8.6%) HM were unsafe for human use because they exceeded WHO's permissible limits for TVL, TCC, and E. coli counts respectively. Solids had significantly higher mean TVL than liquids. Violation of NDA's guidelines was significantly associated with high TVL. Fifty-nine bacteria, viz., Klebsiella pneumoniae (n = 34; 57.6%), Escherichia. coli (12; 20.3%), Staphylococcus aureus (7; 11.9%), Klebsiella oxytoca (3; 5.1%), Bacillus cereus, Pseudomonas aeruginosa, and Enterobacter spp. (1; 1.7% each), were isolated from 45 (32.1%) samples. These bacteria can cause severe clinical diseases, and promote deterioration of HM potency.


Assuntos
Infecções por Escherichia coli , Plantas Medicinais , Infecções Estafilocócicas , Antibacterianos/farmacologia , Enterobacter , Escherichia coli , Bactérias Gram-Negativas , Humanos , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Uganda/epidemiologia
3.
Methods Protoc ; 5(4)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893580

RESUMO

The existing methods of callose quantification include epifluorescence microscopy and fluorescence spectrophotometry of aniline blue-stained callose particles, immuno-fluorescence microscopy and indirect assessment of both callose synthase and ß-(1,3)-glucanase enzyme activities. Some of these methods are laborious, time consuming, not callose-specific, biased and require high technical skills. Here, we describe a method of callose quantification based on Sandwich Enzyme-Linked Immunosorbent Assay (S-ELISA). Tissue culture-derived banana plantlets were inoculated with Xanthomonas campestris pv. musacearum (Xcm) bacteria as a biotic stress factor inducing callose production. Banana leaf, pseudostem and corm tissue samples were collected at 14 days post-inoculation (dpi) for callose quantification. Callose levels were significantly different in banana tissues of Xcm-inoculated and control groups except in the pseudostems of both banana genotypes. The method described here could be applied for the quantification of callose in different plant species with satisfactory level of specificity to callose, and reproducibility. Additionally, the use of 96-well plate makes this method suitable for high throughput callose quantification studies with minimal sampling and analysis biases. We provide step-by-step detailed descriptions of the method.

4.
CABI Agric Biosci ; 3(1): 39, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755157

RESUMO

Background: Watermelons and pumpkins are cultivated in Uganda for their leaves, fruits, and seeds, thereby contributing to food, nutrition and income security. However, there is limited research and information on constraints affecting their production. This study assessed the current production constraints for watermelons and pumpkins, management practices, sources of production inputs to guide research and decision making in production of these crops. Methodology: Watermelon and pumpkin fields totalling 105 located in 28 districts from nine sub-regions of Uganda were surveyed. Purposive sampling was conducted based on the importance and availability of watermelon and pumpkin fields in the sub-regions using a questionnaire administered to farmers on different practices, management strategies, and current production constraints. Data were analysed to determine the relationship between the source of seed, sale of their produce, constraints, and control measures of biotic constraints in the different sub-regions. Results: Pumpkins and watermelons were grown by 85.7% and 14.3% of respondent farmers, respectively. The constraints as ranked by the farmers were pests, diseases, drought, high transport and labour costs. Bacterial wilt, downy mildews, anthracnose powdery mildews and virus diseases in this order were the most common and important disease constraints.The whitefly (Bemisia tabaci, Gennadius), order hemiptera family aleyrodidae, aphids (Myzus Persicae, Sulzer), order hemiptera family aphidadae, melon fly (Bactrocera cucurbitae, Coquillett), order diptera family tephritidae and cutworm (Agrotis ipsilon, Hufnagel), order lepidoptera family noctuidae, were reported as the most limiting pests of watermelon and pumpkin production. Mixing of several agrochemicals was observed in watermelon fields coupled with gross lack of knowledge of proper usage or purpose of these chemicals may result in pesticide resistance, health and environmental hazards. Conclusion: Pests, diseases, and drought constitute the main constraints affecting watermelon and pumpkin cultivation in Uganda. Whereas weeding using hand hoes is the most common method of weed control, application of ash was the main strategy for pest management in pumpkin, while in watermelons, pheromone traps and pesticides were frequently used.

5.
Antimicrob Resist Infect Control ; 11(1): 11, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35063036

RESUMO

BACKGROUND: Antimicrobial resistance is swiftly increasing all over the world. In Africa, it manifests more in pathogenic bacteria in form of antibiotic resistance (ABR). On this continent, bacterial contamination of commonly used herbal medicine (HM) is on the increase, but information about antimicrobial resistance in these contaminants is limited due to fragmented studies. Here, we analyzed research that characterized ABR in pathogenic bacteria isolated from HM in Africa since 2000; to generate a comprehensive understanding of the drug-resistant bacterial contamination burden in this region. METHODS: The study was conducted according to standards of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). We searched for articles from 12 databases. These were: PubMed, Science Direct, Scifinder scholar, Google scholar, HerbMed, Medline, EMBASE, Cochrane Library, International Pharmaceutical Abstracts, Commonwealth Agricultural Bureau Abstracts, African Journal Online, and Biological Abstracts. Prevalence and ABR traits of bacterial isolates, Cochran's Q test, and the I2 statistic for heterogeneity were evaluated using MedCalcs software. A random-effects model was used to determine the pooled prevalence of ABR traits. The potential sources of heterogeneity were examined through sensitivity analysis, subgroup analysis, and meta-regression at a 95% level of significance. FINDINGS: Eighteen studies met our inclusion criteria. The pooled prevalence of bacterial resistance to at least one conventional drug was 86.51% (95% CI = 61.247-99.357%). The studies were highly heterogeneous (I2 = 99.17%; p < 0.0001), with no evidence of publication bias. The most prevalent multidrug-resistant species was Escherichia coli (24.0%). The most highly resisted drug was Ceftazidime with a pooled prevalence of 95.10% (95% CI = 78.51-99.87%), while the drug-class was 3rd generation cephalosporins; 91.64% (95% CI = 78.64-96.73%). None of the eligible studies tested isolates for Carbapenem resistance. Extended Spectrum ß-lactamase genes were detected in 89 (37.2%) isolates, mostly Salmonella spp., Proteus vulgaris, and K. pneumonia. Resistance plasmids were found in 6 (5.8%) isolates; the heaviest plasmid weighed 23,130 Kilobases, and Proteus vulgaris harbored the majority (n = 5; 83.3%). CONCLUSIONS: Herbal medicines in Africa harbor bacterial contaminants which are highly resistant to conventional medicines. This points to a potential treatment failure when these contaminants are involved in diseases causation. More research on this subject is recommended, to fill the evidence gaps and support the formation of collaborative quality control mechanisms for the herbal medicine industry in Africa.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Contaminação de Medicamentos/estatística & dados numéricos , Farmacorresistência Bacteriana , Medicina Herbária/estatística & dados numéricos , África , Contaminação de Alimentos
6.
Sci Rep ; 11(1): 19480, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593839

RESUMO

Sterility and low seed set in bananas is the main challenge to their conventional genetic improvement. The first step to seed set in a banana breeding program depends on pollination at the right time to ensure effective fertilization. This study aimed at determining bract opening time (BOT) to enhance efficient pollination and seed set in bananas. A Nikon D810 digital camera was set-up to take pictures of growing banana inflorescences at five-minute intervals and time-lapse movies were developed at a speed of 30 frames per second to allow real-time monitoring of BOT. Genotypes studied included wild banana (1), Mchare (2), Matooke (4), Matooke hybrid (1), and plantain (1). Events of bract opening initiated by bract lift for female flowers (P < 0.01) started at 16:32 h and at 18:54 h for male flowers. Start of bract rolling was at 18:51 h among female flowers (P < 0.001) and 20:48 h for male flowers. Bracts ended rolling at 02:33 h and 01:16 h for female and flowers respectively (P < 0.05). Total time of bract opening (from lift to end of rolling) for female flowers was significantly longer than that of male flowers (P < 0.001). On average, the number of bracts subtending female flowers opening increased from one on the first day, to between one and four on the fourth day. The number regressed to one bract on day eight before start of opening of bracts subtending male flowers. There was a longer opening interval between bracts subtending female and male flowers constituting spatial and temporal separation. Bract rolling increased from partial to complete rolling from proximal to the distal end of the inflorescence among female flower. On the other hand, bracts subtending male flowers completely rolled. Differences in BOT of genotypes with the same reference time of assessment may be partly responsible for variable fertility. Hand pollination time between 07:00 and 10:00 h is slightly late thus an early feasible time should be tried.


Assuntos
Flores/crescimento & desenvolvimento , Musa/crescimento & desenvolvimento , Fotografação , Imagem com Lapso de Tempo , Flores/genética , Frutas , Genótipo , Musa/genética , Fotografação/métodos , Polinização , Imagem com Lapso de Tempo/métodos , Tempo (Meteorologia)
7.
PLoS One ; 11(12): e0167769, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28005969

RESUMO

Viruses infecting wild flora may have a significant negative impact on nearby crops, and vice-versa. Only limited information is available on wild species able to host economically important viruses that infect sweetpotatoes (Ipomoea batatas). In this study, Sweet potato chlorotic fleck virus (SPCFV; Carlavirus, Betaflexiviridae) and Sweet potato chlorotic stunt virus (SPCSV; Crinivirus, Closteroviridae) were surveyed in wild plants of family Convolvulaceae (genera Astripomoea, Ipomoea, Hewittia and Lepistemon) in Uganda. Plants belonging to 26 wild species, including annuals, biannuals and perennials from four agro-ecological zones, were observed for virus-like symptoms in 2004 and 2007 and sampled for virus testing. SPCFV was detected in 84 (2.9%) of 2864 plants tested from 17 species. SPCSV was detected in 66 (5.4%) of the 1224 plants from 12 species sampled in 2007. Some SPCSV-infected plants were also infected with Sweet potato feathery mottle virus (SPFMV; Potyvirus, Potyviridae; 1.3%), Sweet potato mild mottle virus (SPMMV; Ipomovirus, Potyviridae; 0.5%) or both (0.4%), but none of these three viruses were detected in SPCFV-infected plants. Co-infection of SPFMV with SPMMV was detected in 1.2% of plants sampled. Virus-like symptoms were observed in 367 wild plants (12.8%), of which 42 plants (11.4%) were negative for the viruses tested. Almost all (92.4%) the 419 sweetpotato plants sampled from fields close to the tested wild plants displayed virus-like symptoms, and 87.1% were infected with one or more of the four viruses. Phylogenetic and evolutionary analyses of the 3'-proximal genomic region of SPCFV, including the silencing suppressor (NaBP)- and coat protein (CP)-coding regions implicated strong purifying selection on the CP and NaBP, and that the SPCFV strains from East Africa are distinguishable from those from other continents. However, the strains from wild species and sweetpotato were indistinguishable, suggesting reciprocal movement of SPCFV between wild and cultivated Convolvulaceae plants in the field.


Assuntos
Carlavirus/isolamento & purificação , Crinivirus/isolamento & purificação , Ipomoea batatas/virologia , Potyvirus/isolamento & purificação , Regiões 3' não Traduzidas/genética , África Oriental , Capsídeo/metabolismo , Carlavirus/classificação , Carlavirus/metabolismo , Coinfecção/virologia , Crinivirus/classificação , Crinivirus/metabolismo , Evolução Molecular , Incidência , Ipomoea batatas/crescimento & desenvolvimento , Filogenia , Doenças das Plantas/etiologia , Doenças das Plantas/virologia , Potyvirus/classificação , Potyvirus/metabolismo , Recombinação Genética , Uganda , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
PLoS One ; 8(11): e81479, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278443

RESUMO

BACKGROUND: The bipartite single-stranded RNA genome of Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus; Closteroviridae) encodes a Class 1 RNase III (RNase3), a putative hydrophobic protein (p7) and a 22-kDa protein (p22) from genes located in RNA1. RNase3 and p22 suppress RNA silencing, the basal antiviral defence mechanism in plants. RNase3 is sufficient to render sweetpotato (Ipomoea batatas) virus-susceptible and predisposes it to development of severe diseases following infection with unrelated virus. The incidence, strains and gene content of SPCSV infecting wild plant species have not been studied. METHODOLOGY/PRINCIPAL FINDINGS: Thirty SPCSV isolates were characterized from 10 wild Ipomoea species, Hewittia sublobata or Lepistemon owariensis (family Convolvulaceae) in Uganda and compared with 34 local SPCSV isolates infecting sweetpotatoes. All isolates belonged to the East African (EA) strain of SPCSV and contained RNase3 and p7, but p22 was not detected in six isolates. The three genes showed only limited genetic variability and the proteins were under purifying selection. SPCSV isolates lacking p22 synergized with Sweet potato feathery mottle virus (SPFMV, genus potyvirus; Potyviridae) and caused severe symptoms in co-infected sweetpotato plants. One SPCSV isolate enhanced accumulation of SPFMV, but no severe symptoms developed. A new whitefly-transmitted virus (KML33b) encoding an RNase3 homolog (<56% identity to SPCSV RNase3) able to suppresses sense-mediated RNA silencing was detected in I. sinensis. CONCLUSIONS/SIGNIFICANCE: SPCSV isolates infecting wild species and sweetpotato in Uganda were genetically undifferentiated, suggesting inter-species transmission of SPCSV. Most isolates in Uganda contained p22, unlike SPCSV isolates characterized from other countries and continents. Enhanced accumulation of SPFMV and increased disease severity were found to be uncoupled phenotypic outcomes of RNase3-mediated viral synergism in sweetpotato. A second virus encoding an RNase3-like RNA silencing suppressor was detected. Overall, results provided many novel and important insights into evolutionary biology of SPCSV.


Assuntos
Crinivirus/genética , Evolução Molecular , Genes Supressores , Variação Genética , Ipomoea batatas/virologia , Doenças das Plantas/virologia , RNA Viral/genética , Sequência de Aminoácidos , Ipomoea batatas/classificação , Dados de Sequência Molecular , Fenótipo , Filogenia , Seleção Genética , Alinhamento de Sequência , Sorotipagem , Proteínas Virais/genética
9.
PLoS One ; 7(8): e42758, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912734

RESUMO

BACKGROUND: Arctium species (Asteraceae) are distributed worldwide and are used as food and rich sources of secondary metabolites for the pharmaceutical industry, e.g., against avian influenza virus. RNA silencing is an antiviral defense mechanism that detects and destroys virus-derived double-stranded RNA, resulting in accumulation of virus-derived small RNAs (21-24 nucleotides) that can be used for generic detection of viruses by small-RNA deep sequencing (SRDS). METHODOLOGY/PRINCIPAL FINDINGS: SRDS was used to detect viruses in the biennial wild plant species Arctium tomentosum (woolly burdock; family Asteraceae) displaying virus-like symptoms of vein yellowing and leaf mosaic in southern Finland. Assembly of the small-RNA reads resulted in contigs homologous to Alstroemeria virus X (AlsVX), a positive/single-stranded RNA virus of genus Potexvirus (family Alphaflexiviridae), or related to negative/single-stranded RNA viruses of the genus Emaravirus. The coat protein gene of AlsVX was 81% and 89% identical to the two AlsVX isolates from Japan and Norway, respectively. The deduced, partial nucleocapsid protein amino acid sequence of the emara-like virus was only 78% or less identical to reported emaraviruses and showed no variability among the virus isolates characterized. This virus--tentatively named as Woolly burdock yellow vein virus--was exclusively associated with yellow vein and leaf mosaic symptoms in woolly burdock, whereas AlsVX was detected in only one of the 52 plants tested. CONCLUSIONS/SIGNIFICANCE: These results provide novel information about natural virus infections in Acrtium species and reveal woolly burdock as the first natural host of AlsVX besides Alstroemeria (family Alstroemeriaceae). Results also revealed a new virus related to the recently emerged Emaravirus genus and demonstrated applicability of SRDS to detect negative-strand RNA viruses. SRDS potentiates virus surveys of wild plants, a research area underrepresented in plant virology, and helps reveal natural reservoirs of viruses that cause yield losses in cultivated plants.


Assuntos
Arctium/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Potexvirus/genética , Potexvirus/fisiologia , RNA Viral/genética , Análise de Sequência de RNA , Proteínas do Capsídeo/genética , Dados de Sequência Molecular , Doenças das Plantas/virologia , Folhas de Planta/virologia
11.
Mol Ecol ; 19(15): 3139-56, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20609081

RESUMO

Sweet potato feathery mottle virus (SPFMV, genus Potyvirus) is globally the most common pathogen of cultivated sweet potatoes (Ipomoea batatas; Convolvulaceae). Although more than 150 SPFMV isolates have been sequence-characterized from cultivated sweet potatos across the world, little is known about SPFMV isolates from wild hosts and the evolutionary forces shaping SPFMV population structures. In this study, 46 SPFMV isolates from 14 wild species of genera Ipomoea, Hewittia and Lepistemon (barcoded for the matK gene in this study) and 13 isolates from cultivated sweet potatoes were partially sequenced. Wild plants were infected with the EA, C or O strain, or co-infected with the EA and C strains of SPFMV. In East Africa, SPFMV populations in wild species and sweet potato were genetically undifferentiated, suggesting inter-host transmission of SPFMV. Globally, spatial diversification of the 178 isolates analysed was observed, strain EA being largely geographically restricted to East Africa. Recombination was frequently detected in the 6K2-VPg-NIaPro region of the EA strain, demonstrating a recombination 'hotspot'. Recombination between strains EA and C was rare, despite their frequent co-infections in wild plants, suggesting purifying selection against strain EA/C recombinants. Positive selection was predicted on 17 amino acids distributed over the entire coat protein in the globally distributed strain C, as compared to only four amino acids in the coat protein N-terminus of the EA strain. This selection implies a more recent introduction of the C strain and a higher adaptation of the EA strain to the local ecosystem. Thus, East Africa appears as a hotspot for evolution and diversification of SPFMV.


Assuntos
Evolução Molecular , Genética Populacional , Ipomoea batatas/virologia , Potyvirus/genética , Proteínas do Capsídeo/genética , Genoma Viral , Geografia , Filogenia , Polimorfismo de Fragmento de Restrição , Potyvirus/classificação , Potyvirus/isolamento & purificação , RNA Viral/genética , Recombinação Genética , Seleção Genética , Análise de Sequência de RNA , Uganda
12.
J Gen Virol ; 91(Pt 4): 1092-108, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19923261

RESUMO

Sweet potato mild mottle virus (SPMMV) is the type member of the genus Ipomovirus (family Potyviridae). SPMMV occurs in cultivated sweetpotatoes (Ipomoea batatas Lam.; Convolvulaceae) in East Africa, but its natural wild hosts are unknown. In this study, SPMMV was detected in 283 (9.8 %) of the 2864 wild plants (family Convolvulaceae) sampled from different agro-ecological zones of Uganda. The infected plants belonged to 21 species that were previously not known to be natural hosts of SPMMV. The size of the SPMMV coat protein (CP) was determined by Western blot analysis, N-terminal protein sequencing and peptide mass fingerprinting. Data implicated a proteolytic cleavage site, VYVEPH/A, at the NIb/CP junction, resulting in a CP of approximately 35 kDa. Nearly complete sequences of 13 SPMMV isolates were characterized. Phylogenetic analysis of non-recombinant CP-encoding sequences placed five isolates from wild species sampled in the central zone of Uganda into a separate cluster. Recombination events were detected in the 5'- and 3'-proximal parts of the genome, providing novel evidence of recombination in the genus Ipomovirus. Thirteen amino acids in the N terminus of the P1 protein were under positive selection, whereas purifying selection was implicated for the HC-Pro-, P3-, 6K1- and CP-encoding regions. These data, supported by previous studies on ipomoviruses, provide indications of an evolutionary process in which the P1 proteinase responds to the needs of adaptation.


Assuntos
Ipomoea batatas/virologia , Potyviridae/genética , Recombinação Genética , Seleção Genética , África , Sequência de Aminoácidos , Sequência de Bases , Proteínas do Capsídeo/análise , Proteínas do Capsídeo/química , Evolução Molecular , Ipomoea batatas/crescimento & desenvolvimento , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...