Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Work Expo Health ; 63(9): 1029-1045, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31587034

RESUMO

Dustiness is not an intrinsic physically defined property of a powder, but the tendency of particles to become airborne in response to mechanical and/or aerodynamic stimuli. The present study considers a set of 10 physical properties to which the powder dustiness can be attributed. Through a preliminary investigation of a standardized continuous drop test scenario, we present first set of results on the varying degrees or weights of influence of these properties on the aerosolization tendency of powder particles. The inter-particle distance is found to be the most dominant property controlling the particle aerosolization, followed by the ability of powder particles to get electrostatically charged. We observe the kinetics involved during powder aerosolization to be governed by two ratios: drag force/cohesive force and drag force/gravitational force. The converging tendencies in these initial results indicate that these physical properties can be used to model dustiness of falling powder, which can eventually be used in risk assessment tools for an efficient exposure estimation of the powders.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poeira/análise , Exposição Ocupacional/análise , Pós/análise , Aerossóis/análise , Humanos , Tamanho da Partícula
2.
Indoor Air ; 29(5): 803-816, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31206776

RESUMO

A particle exposure experiment inside a large climate-controlled chamber was conducted. Data on spatial and temporal distribution of nanoscale and fine aerosols in the range of mobility diameters 8-600 nm were collected with high resolution, for sodium chloride, fluorescein sodium, and silica particles. Exposure scenarios studied included constant and intermittent source emissions, different aggregation conditions, high (10 h-1 ) and low (3.5 h-1 ) air exchange rates (AERs) corresponding to chamber Reynolds number, respectively, equal to 1 × 105 and 3 × 104 . Results are presented and analyzed to highlight the main determinants of exposure and to determine whether the assumptions underlying two-box models hold under various scenarios. The main determinants of exposure found were the source generation rate and the ventilation rate. The effect of particles nature was indiscernible, and the decrease of airborne total number concentrations attributable to surface deposition was estimated lower than 2% when the source was active. A near-field/far-field structure of aerosol concentration was always observed for the AER = 10 h-1 but for AER = 3.5 h-1 , a single-field structure was found. The particle size distribution was always homogeneous in space but a general shift of particle diameter (-8% to +16%) was observed between scenarios in correlation with the AER and with the source position, presumably largely attributable to aggregation.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Humanos , Modelos Teóricos , Nanopartículas , Tamanho da Partícula , Análise Espaço-Temporal , Ventilação
3.
J Hazard Mater ; 341: 218-227, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28780436

RESUMO

Here, we studied the particle release rate during Electrostatic spray deposition of anatase-(TiO2)-based photoactive coating onto tiles and wallpaper using a commercially available electrostatic spray device. Spraying was performed in a 20.3m3 test chamber while measuring concentrations of 5.6nm to 31µm-size particles and volatile organic compounds (VOC), as well as particle deposition onto room surfaces and on the spray gun user hand. The particle emission and deposition rates were quantified using aerosol mass balance modelling. The geometric mean particle number emission rate was 1.9×1010s-1 and the mean mass emission rate was 381µgs-1. The respirable mass emission-rate was 65% lower than observed for the entire measured size-range. The mass emission rates were linearly scalable (±ca. 20%) to the process duration. The particle deposition rates were up to 15h-1 for <1µm-size and the deposited particles consisted of mainly TiO2, TiO2 mixed with Cl and/or Ag, TiO2 particles coated with carbon, and Ag particles with size ranging from 60nm to ca. 5µm. As expected, no significant VOC emissions were observed as a result of spraying. Finally, we provide recommendations for exposure model parameterization.

4.
Sci Total Environ ; 605-606: 929-945, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28688352

RESUMO

Personal monitors based on unipolar diffusion charging (miniDiSC/DiSCmini, NanoTracer, Partector) can be used to assess the individual exposure to nanoparticles in different environments. The charge acquired by the aerosol particles is nearly proportional to the particle diameter and, by coincidence, also nearly proportional to the alveolar lung-deposited surface area (LDSA), the metric reported by all three instruments. In addition, the miniDiSC/DiSCmini and the NanoTracer report particle number concentration and mean particle size. In view of their use for personal exposure studies, the comparability of these personal monitors was assessed in two measurement campaigns. Altogether 29 different polydisperse test aerosols were generated during the two campaigns, covering a large range of particle sizes, morphologies and concentrations. The data provided by the personal monitors were compared with those obtained from reference instruments: a scanning mobility particle sizer (SMPS) for LDSA and mean particle size and a ultrafine particle counter (UCPC) for number concentration. The results indicated that the LDSA concentrations and the mean particle sizes provided by all investigated instruments in this study were in the order of ±30% of the reference value obtained from the SMPS when the particle sizes of the test aerosols generated were within 20-400nm and the instruments were properly calibrated. Particle size, morphology and concentration did not have a major effect within the aforementioned limits. The comparability of the number concentrations was found to be slightly worse and in the range of ±50% of the reference value obtained from the UCPC. In addition, a minor effect of the particle morphology on the number concentration measurements was observed. The presence of particles >400nm can drastically bias the measurement results of all instruments and all metrics determined.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/instrumentação , Nanopartículas/análise , Exposição Ocupacional/análise , Dispositivos Eletrônicos Vestíveis , Aerossóis , Humanos , Tamanho da Partícula , Local de Trabalho
5.
J Hazard Mater ; 322(Pt A): 17-28, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27181990

RESUMO

For exposure and risk assessment in occupational settings involving engineered nanomaterials (ENMs), it is important to understand the mechanisms of release and how they are influenced by the ENM, the matrix material, and process characteristics. This review summarizes studies providing ENM release information in occupational settings, during different industrial activities and using various nanomaterials. It also assesses the contextual information - such as the amounts of materials handled, protective measures, and measurement strategies - to understand which release scenarios can result in exposure. High-energy processes such as synthesis, spraying, and machining were associated with the release of large numbers of predominantly small-sized particles. Low-energy processes, including laboratory handling, cleaning, and industrial bagging activities, usually resulted in slight or moderate releases of relatively large agglomerates. The present analysis suggests that process-based release potential can be ranked, thus helping to prioritize release assessments, which is useful for tiered exposure assessment approaches and for guiding the implementation of workplace safety strategies. The contextual information provided in the literature was often insufficient to directly link release to exposure. The studies that did allow an analysis suggested that significant worker exposure might mainly occur when engineering safeguards and personal protection strategies were not carried out as recommended.


Assuntos
Poluentes Ocupacionais do Ar/análise , Nanoestruturas/química , Exposição Ocupacional/análise , Humanos , Indústrias , Medição de Risco , Local de Trabalho
6.
Int J Hyg Environ Health ; 219(6): 503-12, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27283207

RESUMO

Over the past decade, the primary focus of nanotoxicology and nanoenvironmental health and safety efforts has been largely on inhalation exposure to engineered nanomaterials, at the production stage, and much less on considering risks along the life cycle of nano-enabled products. Dermal exposure to nanomaterials and its health impact has been studied to a much lesser extent, and mostly in the context of intentional exposure to nano-enabled products such as in nanomedicine, cosmetics and personal care products. How concerning is dermal exposure to such nanoparticles in the context of occupational exposures? When and how should we measure it? In the first of a series of two papers (Larese Filon et al., 2016), we focused our attention on identifying conditions or situations, i.e. a combination of nanoparticle physico-chemical properties, skin barrier integrity, and occupations with high prevalence of skin disease, which deserve further investigation. This second paper focuses on the broad question of dermal exposure assessment to nanoparticles and attempts to give an overview of the mechanisms of occupational dermal exposure to nanoparticles and nano-enabled products and explores feasibility and adequacy of various methods of quantifying dermal exposure to NOAA. We provide here a conceptual framework for screening, prioritization, and assessment of dermal exposure to NOAA in occupational settings, and integrate it into a proposed framework for risk assessment.


Assuntos
Monitoramento Ambiental/métodos , Nanopartículas , Exposição Ocupacional , Absorção Cutânea , Animais , Dermatite Ocupacional/etiologia , Ingestão de Alimentos , Humanos , Nanopartículas/efeitos adversos , Nanopartículas/análise , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise
7.
J Expo Sci Environ Epidemiol ; 24(1): 74-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23860399

RESUMO

This paper reports a study of the dispersion of manufactured nano-objects (MNOs) through the air, both in time and space, during the use of two commercially available nano-spray products and comparable products without MNOs. The main objective was to identify whether personal exposure can occur at a greater distance than the immediate proximity of the source (>1 m from the source), that is, in the "far field" (bystanders), or at a period after the emission occurred (re-entry). The spray experiments were conducted in an experimental room with well-controlled environmental and ventilation conditions (19.5 m(3)). The concentration of MNOs was investigated by measuring real-time size distribution, number, and active surface area concentration. For off-line analysis of the particles in the air, samples for scanning/transmission electron microscopy and elemental analysis were collected. The release of MNOs was measured at ∼30 and 290 cm from the source ("near field" and "far field", respectively). For all four spray products, the maximum number and surface area concentrations in the "near field" exceeded the maximum concentrations reached in the "far field". At 2 min after the emission occurred, the concentration in both the "near field" and "far field" reached a comparable steady-state level above background level. These steady-state concentrations remained elevated above background concentration throughout the entire measurement period (12 min). The results of the real-time measurement devices mainly reflect the liquid aerosols emitted by the spray process itself rather than only the MNO, which hampers the interpretation of the results. However, the combination of the off-line analysis and the results of the real-time devices indicates that after the use of nano-spray products, personal exposure to MNOs can occur not only in the near field, but also at a greater distance than the immediate proximity of the source and at a period after emission occurred.


Assuntos
Aerossóis , Exposição por Inalação/análise , Nanopartículas , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Física
8.
J Colloid Interface Sci ; 248(2): 306-14, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16290535

RESUMO

The gas to particle synthesis route is a relatively clean and efficient manner for the production of high-quality ceramic powders. These powders can be subsequently sintered in any wanted shape. The modeling of these production systems is difficult because several mechanisms occur in parallel. From theoretical considerations it can be determined, however, that coagulation and sintering are dominant mechanisms as far as shape and size of the particles are considered. In part I of this article an extensive theoretical analysis was given on the self-preserving size distribution theory for power law particles. In this second part, cumulative particle size distributions of silicon and silicon nitride agglomerates, produced in a laser reactor, were determined from TEM pictures and compared to the distributions calculated from this self-preserving theory for power law particles. The calculated distributions were in fair agreement with the measured results, especially at the high end of the distributions. Calculated and measured particle growth rates were also in fair agreement. Using the self-preserving theory an analysis was made on the distribution of annealed silicon agglomerates, of interest in applications to nanoparticle technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...