Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Graph Model ; 76: 289-295, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28743072

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) play important roles in maintaining the accuracy of protein synthesis. Some aaRSs accomplish this via editing mechanisms, among which leucyl-tRNA synthetase (LeuRS) edits non-cognate amino acid norvaline mainly by post-transfer editing. However, the molecular basis for this pathway for eukaryotic and archaeal LeuRS remain unclear. In this study, a complex of archaeal P. horikoshii LeuRS (PhLeuRS) with misacylated tRNALeu was modeled wherever tRNA's acceptor stem was oriented directly into the editing site. To understand the distinctive features of organization we reconstructed a complex of PhLeuRS with tRNA and visualize post-transfer editing interactions mode by performing molecular dynamics (MD) simulation studies. To study molecular basis for substrate selectivity by PhLeuRS's editing site we utilized MD simulation of the entire LeuRS complexes using a diverse charged form of tRNAs, namely norvalyl-tRNALeu and isoleucyl-tRNALeu. In general, the editing site organization of LeuRS from P.horikoshii has much in common with bacterial LeuRS. The MD simulation results revealed that the post-transfer editing substrate norvalyl-A76, binds more strongly than isoleucyl-A76. Moreover, the branched side chain of isoleucine prevents water molecules from being closer and hence the hydrolysis reaction slows significantly. To investigate a possible mechanism of the post-transfer editing reaction, by PhLeuRS we have determined that two water molecules (the attacking and assisting water molecules) are localized near the carbonyl group of the amino acid to be cleaved off. These water molecules approach the substrate from the opposite side to that observed for Thermus thermophilus LeuRS (TtLeuRS). Based on the results obtained, it was suggested that the post-transfer editing mechanism of PhLeuRS differs from that of prokaryotic TtLeuRS.


Assuntos
Archaea/enzimologia , Archaea/genética , Leucina-tRNA Ligase/química , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , RNA de Transferência/química , Hidrólise , Leucina-tRNA Ligase/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Edição de RNA , RNA de Transferência/genética , Especificidade por Substrato
2.
Artigo em Inglês | MEDLINE | ID: mdl-22442226

RESUMO

Translation elongation factor eEF1A2 was purified to homogeneity from rabbit muscle by two consecutive ion-exchange column-chromatography steps and this mammalian eEF1A2 was successfully crystallized for the first time. Protein crystals obtained using ammonium sulfate as precipitant diffracted to 2.5 Å resolution and belonged to space group P6(1)22 or P6(3)22 (unit-cell parameters a = b = 135.4, c = 304.6 Å). A complete native data set was collected to 2.7 Å resolution.


Assuntos
Fator 1 de Elongação de Peptídeos/química , Animais , Cristalografia por Raios X , Fator 1 de Elongação de Peptídeos/isolamento & purificação , Coelhos
3.
Ukr Biokhim Zh (1999) ; 80(6): 52-9, 2008.
Artigo em Russo | MEDLINE | ID: mdl-19351057

RESUMO

Maintenance of amino acid specificity by aminoacyl-tRNA synthetases, particularly prolyl-tRNA synthetase, requires for not only specific recognition of homologic amino acid, but also missynthesized products hydrolysis, known as editing. The speeding-up of the enzymatic hydrolysis of missynthesized alanyl adenylate by bacteria Enterococcus faecalis prolyl-tRNA synthetase in the presence of tRNAPro, and also importance for this function of 2'- and 3'-hydroxyle groups of tRNA 3'-terminal adenosine ribose is shown in the work. Furthermore, results are shown, that support the absence of editing (INS) domain role in alanyl adenylate hydrolysis. Possible significance of tRNA-dependent alanyl adenylate hydrolysis by prolyl-tRNA synthetase for prolyl-tRNAPro synthesis specificity maintenance is discussed.


Assuntos
Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/genética , Enterococcus faecalis/enzimologia , Edição de RNA , RNA de Transferência/genética , Aminoacilação de RNA de Transferência , Trifosfato de Adenosina/metabolismo , Enterococcus faecalis/genética , Hidrólise , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Rodopseudomonas/enzimologia , Rodopseudomonas/genética
4.
J Mol Biol ; 309(4): 989-1002, 2001 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-11399074

RESUMO

We describe the recognition by Thermus thermophilus prolyl-tRNA synthetase (ProRSTT) of proline, ATP and prolyl-adenylate and the sequential conformational changes occurring when the substrates bind and the activated intermediate is formed. Proline and ATP binding cause respectively conformational changes in the proline binding loop and motif 2 loop. However formation of the activated intermediate is necessary for the final conformational ordering of a ten residue peptide ("ordering loop") close to the active site which would appear to be essential for functional tRNA 3' end binding. These induced fit conformational changes ensure that the enzyme is highly specific for proline activation and aminoacylation. We also present new structures of apo and AMP bound histidyl-tRNA synthetase (HisRS) from T. thermophilus which we compare to our previous structures of the histidine and histidyl-adenylate bound enzyme. Qualitatively, similar results to those observed with T. thermophilus prolyl-tRNA synthetase are found. However histidine binding is sufficient to induce the co-operative ordering of the topologically equivalent histidine binding loop and ordering loop. These two examples contrast with most other class II aminoacyl-tRNA synthetases whose pocket for the cognate amino acid side-chain is largely preformed. T. thermophilus prolyl-tRNA synthetase appears to be the second class II aminoacyl-tRNA synthetase, after HisRS, to use a positively charged amino acid instead of a divalent cation to catalyse the amino acid activation reaction.


Assuntos
Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Histidina-tRNA Ligase/química , Histidina-tRNA Ligase/metabolismo , Thermus thermophilus/enzimologia , Acilação , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítio Alostérico , Apoenzimas/química , Apoenzimas/metabolismo , Cristalografia por Raios X , Ativação Enzimática , Histidina/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Prolina/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Pirrolidinas/metabolismo , Especificidade por Substrato
5.
Eur J Biochem ; 268(3): 761-7, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11168416

RESUMO

Using in vitro tRNA transcripts and minihelices it was shown that the tyrosine identity for tRNA charging by tyrosyl-tRNA synthetase (TyrRS) from the archaeon Methanococcus jannaschii is determined by six nucleotides: the discriminator base A73 and the first base-pair C1-G72 in the acceptor stem together with the anticodon triplet. The anticodon residues however, participate only weakly in identity determination, especially residues 35 and 36. The completeness of the aforementioned identity set was verified by its tranfer into several tRNAs which then become as efficiently tyrosylatable as the wild-type transcript from M. jannaschii. Temperature dependence experiments on both the structure and the tyrosylation properties of M. jannaschii and yeast tRNA(Tyr) transcripts show that the archaeal transcript has greater structural stability and enhanced aminoacylation behaviour than the yeast transcript. Tyrosine identity in M. jannaschii is compared to that in yeast, and the conservation of the major determinant in both organisms, namely the C1-G72 pair, gives additional support to the existence of a functional connection between archaeal and eukaryotic aminoacylation systems.


Assuntos
Mathanococcus/química , RNA de Transferência de Tirosina/química , Saccharomyces cerevisiae/química , Tirosina-tRNA Ligase/química , Tirosina/química , Anticódon , Archaea/metabolismo , Sequência de Bases , Sequência Conservada , Evolução Molecular , Cinética , Mathanococcus/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA de Transferência de Tirosina/genética , Saccharomyces cerevisiae/genética , Temperatura , Tirosina/metabolismo , Tirosina-tRNA Ligase/genética , Raios Ultravioleta
6.
EMBO J ; 19(17): 4745-58, 2000 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10970866

RESUMO

Prolyl-tRNA synthetase (ProRS) is a class IIa synthetase that, according to sequence analysis, occurs in different organisms with one of two quite distinct structural architectures: prokaryote-like and eukaryote/archaeon-like. The primary sequence of ProRS from the hypothermophilic eubacterium Thermus thermophilus (ProRSTT) shows that this enzyme is surprisingly eukaryote/archaeon-like. We describe its crystal structure at 2.43 angstom resolution, which reveals a feature that is unique among class II synthetases. This is an additional zinc-containing domain after the expected class IIa anticodon-binding domain and whose C-terminal extremity, which ends in an absolutely conserved tyrosine, folds back into the active site. We also present an improved structure of ProRSTT complexed with tRNAPro(CGG) at 2.85 angstom resolution. This structure represents an initial docking state of the tRNA in which the anticodon stem-loop is engaged, particularly via the tRNAPro-specific bases G35 and G36, but the 3' end does not enter the active site. Considerable structural changes in tRNA and/or synthetase, which are probably induced by small substrates, are required to achieve the conformation active for aminoacylation.


Assuntos
Aminoacil-tRNA Sintetases/química , RNA de Transferência de Prolina/química , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Anticódon , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
7.
EMBO J ; 19(10): 2351-61, 2000 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10811626

RESUMO

Leucyl-, isoleucyl- and valyl-tRNA synthetases are closely related large monomeric class I synthetases. Each contains a homologous insertion domain of approximately 200 residues, which is thought to permit them to hydrolyse ('edit') cognate tRNA that has been mischarged with a chemically similar but non-cognate amino acid. We describe the first crystal structure of a leucyl-tRNA synthetase, from the hyperthermophile Thermus thermophilus, at 2.0 A resolution. The overall architecture is similar to that of isoleucyl-tRNA synthetase, except that the putative editing domain is inserted at a different position in the primary structure. This feature is unique to prokaryote-like leucyl-tRNA synthetases, as is the presence of a novel additional flexibly inserted domain. Comparison of native enzyme and complexes with leucine and a leucyl- adenylate analogue shows that binding of the adenosine moiety of leucyl-adenylate causes significant conformational changes in the active site required for amino acid activation and tight binding of the adenylate. These changes are propagated to more distant regions of the enzyme, leading to a significantly more ordered structure ready for the subsequent aminoacylation and/or editing steps.


Assuntos
Leucina-tRNA Ligase/química , Thermus thermophilus/enzimologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Leucina-tRNA Ligase/genética , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Especificidade por Substrato , Thermus thermophilus/química
8.
Acta Crystallogr D Biol Crystallogr ; 56(Pt 5): 667-9, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10771445

RESUMO

Leucyl-tRNA synthetase from Thermus thermophilus (LeuRSTT) is the first LeuRS to be crystallized. Two crystal forms of the native enzyme have been obtained using the hanging-drop vapour-diffusion method with ammonium sulfate as a precipitant. Crystals of the first form belong to space group I422 and have unit-cell parameters a = b = 312.4, c = 100.4 A. They diffract anisotropically to 3.5 A resolution in the c-axis direction and to only 6 A resolution in the perpendicular direction. Crystals of the second form, which can be obtained native or with leucine or a leucyl-adenylate analogue bound, belong to space group C222(1) and have unit-cell parameters a = 102. 4, b = 154.1, c = 174.3 A. They diffract to 1.9 A resolution and contain one monomer in the asymmetric unit. Selenomethionated LeuRSTT has been produced and crystals of the second form suitable for MAD analysis have been grown.


Assuntos
Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/metabolismo , Leucina/análogos & derivados , Leucina/metabolismo , Thermus thermophilus/enzimologia , Cristalização , Cristalografia por Raios X/métodos , Leucina-tRNA Ligase/isolamento & purificação , Selenometionina/metabolismo
9.
Acta Crystallogr D Biol Crystallogr ; 56(Pt 2): 195-6, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10666603

RESUMO

Prolyl-tRNA synthetase from Thermus thermophilus (ProRSTT) was purified to homogeneity using a five-step purification procedure and was crystallized using ethylene glycol as a precipitant. Crystals of ProRSTT belong to the space group P2(1)2(1)2, with unit-cell parameters a = 132, b = 191, c = 125 A, have two homodimers per asymmetric unit and diffract to 2.4 A resolution. A complete native data set to 2.43 A resolution has been collected and a data set from ProRSTT in complex with proline has been collected to 2.9 A resolution.


Assuntos
Aminoacil-tRNA Sintetases/química , Proteínas de Bactérias/química , Thermus thermophilus/enzimologia , Aminoacil-tRNA Sintetases/isolamento & purificação , Precipitação Química , Cristalização , Cristalografia por Raios X
10.
Acta Crystallogr D Biol Crystallogr ; 56(Pt 2): 197-9, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10666604

RESUMO

The complex between Thermus thermophilus prolyl-tRNA synthetase (ProRSTT) and its cognate tRNA has been crystallized using two different isoacceptors of tRNA(Pro). Similar bipyramidal crystals of the complexes of ProRSTT with the two different tRNA(Pro) isoacceptors grow within two weeks from 32% saturated ammonium sulfate solution. They belong to space group P4(3)2(1)2, with unit-cell parameters a = 143.1, b = 143.1, c = 228.6 A. The crystals diffract weakly to a maximum resolution of 3.1 A. Superior quality crystals were obtained by growing slowly from precipitate over 5-6 months. These are of the same space group but have slightly altered unit-cell parameters, a = 140.8, b = 140.8, c = 237.0 A. These crystals diffract more strongly to at least 2.8 A resolution and a complete data set to 2.85 A resolution has been collected from a single crystal. Comparison of the packing in the two crystal forms shows that domain flexibility contributes to the presence of different crystal contacts in the two forms.


Assuntos
Aminoacil-tRNA Sintetases/química , RNA de Transferência de Prolina/química , Thermus thermophilus/enzimologia , Aminoacil-tRNA Sintetases/metabolismo , Anticódon/química , Anticódon/metabolismo , Sítios de Ligação , Precipitação Química , Cristalização , Dimerização , Conformação Proteica , Estrutura Terciária de Proteína , RNA de Transferência de Prolina/metabolismo
11.
Bioorg Khim ; 25(10): 768-73, 1999 Oct.
Artigo em Russo | MEDLINE | ID: mdl-10645480

RESUMO

The reactivity of phosphates in the Thermus thermophilus tRNA(Ser) (GCU) and tRNA(Leu) (CAG) was studied using the ethylnitrosourea modification. It was shown that phosphates of nucleotides 58-60 (T loop), 20-22 (D loop), and 48 (at the junction of the variable and T stems) were poorly modified in both tRNAs. The most pronounced differences in the reactivity were observed for phosphates at the junctions of the variable stem with T-stem (47q, 49) and anticodon stem (45). This indicates differences in orientations of the long variable arm relative to the backbone in the tRNAs studied.


Assuntos
Ácidos Fosfóricos/química , RNA de Transferência de Leucina/química , RNA de Transferência de Serina/química , Thermus thermophilus/genética , Anticódon , Sequência de Bases , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA de Transferência de Leucina/genética , RNA de Transferência de Serina/genética
12.
Bioorg Khim ; 24(8): 593-600, 1998 Aug.
Artigo em Russo | MEDLINE | ID: mdl-9784879

RESUMO

A nucleotide sequence of tRNA(Tyr) from the extreme thermophile Thermus thermophilus HB-27 living at 75 degrees C was determined. It is 86 nt long and shares a 52% homology with tRNA(Tyr) from Escherichia coli. A comparative analysis of the interaction sites of tRNA(Tyr) from T. thermophilus and E. coli with the cognate aminoacyl-tRNA synthetases was accomplished by the chemical modification and nuclease hydrolysis approaches. The tRNA(Tyr) was shown to interact with the cognate enzyme in the anticodon stem (on the 5'-side), in the anticodon, in the variable stem and loop (on the 5'-side), and in the acceptor stem (on the 3'-side). These regions are located in the variable stem of the L-form. It was demonstrated that, upon forming the complex E. coli tRNA(Tyr)-cognate synthetase, endonuclease V1 induces additional cleavages of phosphodiester bonds on the 3'-side of the anticodon stem and on the 5'-side of the T-stem. This implies that tRNA may change its conformation when it interacts with the enzyme.


Assuntos
Aminoacil-tRNA Sintetases/química , Escherichia coli/química , RNA Bacteriano/química , RNA de Transferência de Tirosina/química , Ribonucleases/química , Thermus thermophilus/química , Autorradiografia , Sequência de Bases , Escherichia coli/genética , Hidrólise , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Thermus thermophilus/genética
13.
Structure ; 6(1): 101-8, 1998 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-9493271

RESUMO

BACKGROUND: Most aminoacyl-tRNA synthetases (aaRSs) specifically recognize all or part of the anticodon triplet of nucleotides of their cognate tRNAs. Class IIa and class IIb aaRSs possess structurally distinct tRNA anticodon-binding domains. The class IIb enzymes (LysRS, AspRS and AsnRS) have an N-terminal beta-barrel domain (OB-fold); the interactions of this domain with the anticodon stem-loop are structurally well characterised for AspRS and LysRS. Four out of five class IIa enzymes (ProRS, ThrRS, HisRS and GlyRS, but not SerRS) have a C-terminal anticodon-binding domain with an alpha/beta fold, not yet found in any other protein. The mode of RNA binding by this domain is hitherto unknown as is the rationale, if any, behind classification of anticodon-binding domains for different aaRSs. RESULTS: The crystal structure of Thermus thermophilus prolyl-tRNA synthetase (ProRSTT) in complex with tRNA(Pro) has been determined at 3.5 A resolution by molecular replacement using the native enzyme structure. One tRNA molecule, of which only the lower two-thirds is well ordered, is found bound to the synthetase dimer. The C-terminal anticodon-binding domain binds to the anticodon stem-loop from the major groove side. Binding to tRNA by ProRSTT is reminiscent of the interaction of class IIb enzymes with cognate tRNAs, but only three of the anticodon-loop bases become splayed out (bases 35-37) rather than five (bases 33-37) in the case of class IIb enzymes. The two anticodon bases conserved in all tRNA(Pro), G35 and G36, are specifically recognised by ProRSTT. CONCLUSIONS: For the synthetases possessing the class IIa anticodon-binding domain (ProRS, ThrRS and GlyRS, with the exception of HisRS), the two anticodon bases 35 and 36 are sufficient to uniquely identify the cognate tRNA (GG for proline, GU for threonine, CC for glycine), because these amino acids occupy full codon groups. The structure of ProRSTT in complex with its cognate tRNA shows that these two bases specifically interact with the enzyme, whereas base 34, which can be any base, is stacked under base 33 and makes no interactions with the synthetase. This is in agreement with biochemical experiments which identify bases 35 and 36 as major tRNA identity elements. In contrast, class IIb synthetases (AspRS, AsnRS and LysRS) have a distinct anticodon-binding domain that specifically recognises all three anticodon bases. This again correlates with the requirements of the genetic code for cognate tRNA identification, as the class IIb amino acids occupy half codon groups.


Assuntos
Aminoacil-tRNA Sintetases/química , Anticódon/genética , RNA de Transferência de Prolina/química , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação/fisiologia , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas de Ligação a RNA/química , Alinhamento de Sequência
14.
Biochemistry ; 36(11): 3084-94, 1997 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-9115984

RESUMO

The crystal structure at 2.7 A resolution of histidyl-tRNA synthetase (HisRS) from Thermus thermophilus in complex with its amino acid substrate histidine has been determined. In the crystal asymmetric unit there are two homodimers, each subunit containing 421 amino acid residues. Each monomer of the enzyme consists of three domains: (1) an N-terminal catalytic domain containing a six-stranded antiparallel beta-sheet and the three motifs common to all class II aminoacyl-tRNA synthetases, (2) a 90-residue C-terminal alpha/beta domain which is common to most class IIa synthetases and is probably involved in recognizing the anticodon stem-loop of tRNA(His), and (3) a HisRS-specific alpha-helical domain inserted into the catalytic domain, between motifs II and III. The position of the insertion domain above the catalytic site suggests that it could clamp onto the acceptor stem of the tRNA during aminoacylation. Two HisRS-specific peptides, 259-RGLDYY and 285-GGRYDG, are intimately involved in forming the binding site for the histidine, a molecule of which is found in the active site of each monomer. The structure of HisRS in complex with histidyl adenylate, produced enzymatically in the crystal, has been determined at 3.2 A resolution. This structure shows that the HisRS-specific Arg-259 interacts directly with the alpha-phosphate of the adenylate on the opposite side to the usual conserved motif 2 arginine. Arg-259 thus substitutes for the divalent cation observed in seryl-tRNA synthetase and plays a crucial catalytic role in the mechanism of histidine activation.


Assuntos
Histidina-tRNA Ligase/química , Histidina-tRNA Ligase/metabolismo , Histidina/metabolismo , Estrutura Secundária de Proteína , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Sequência Consenso , Cristalografia por Raios X , Histidina-tRNA Ligase/isolamento & purificação , Cinética , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Software , Eletricidade Estática
15.
EMBO J ; 15(22): 6321-34, 1996 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-8947055

RESUMO

The crystal structures of Thermus thermophilus lysyl-tRNA synthetase, a class IIb aminoacyl-tRNA synthetase, complexed with Escherchia coli tRNA(Lys)(mnm5 s2UUU) at 2.75 A resolution and with a T. thermophilus tRNA(Lys)(CUU) transcript at 2.9 A resolution are described. In both complexes only the tRNA anticodon stem-loop is well ordered. The mode of binding of the anticodon stem-loop to the N-terminal beta-barrel domain is similar to that previously found for the homologous class IIb aspartyl-tRNA synthetase-tRNA(Asp) complex except in the region of the wobble base 34 where either mnm5 s2U or C can be accommodated. The specific recognition of the other anticodon bases, U-35 and U-36, which are both major identity elements in the lysine system, is also described. Additional crystallographic data on a ternary complex with a lysyl-adenylate analogue show that binding of the intermediate induces significant conformational changes in the vicinity of the active site of the enzyme.


Assuntos
Aminoacil-tRNA Sintetases/química , Anticódon/química , RNA de Transferência de Lisina/química , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Escherichia coli/química , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA de Transferência de Ácido Aspártico/química , Alinhamento de Sequência
16.
EMBO J ; 15(11): 2834-42, 1996 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-8654381

RESUMO

The low temperature crystal structure of the ternary complex of Thermus thermophilus seryl-tRNA synthetase with tRNA(Ser) (GGA) and a non-hydrolysable seryl-adenylate analogue has been refined at 2.7 angstrom resolution. The analogue is found in both active sites of the synthetase dimer but there is only one tRNA bound across the two subunits. The motif 2 loop of the active site into which the single tRNA enters interacts within the major groove of the acceptor stem. In particular, a novel ring-ring interaction between Phe262 on the extremity of this loop and the edges of bases U68 and C69 explains the conservation of pyrimidine bases at these positions in serine isoaccepting tRNAs. This active site takes on a significantly different ordered conformation from that observed in the other subunit, which lacks tRNA. Upon tRNA binding, a number of active site residues previously found interacting with the ATP or adenylate now switch to participate in tRNA recognition. These results shed further light on the structural dynamics of the overall aminoacylation reaction in class II synthetases by revealing a mechanism which may promote an ordered passage through the activation and transfer steps.


Assuntos
RNA de Transferência de Serina/ultraestrutura , Serina-tRNA Ligase/ultraestrutura , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/enzimologia , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
17.
Proteins ; 22(4): 426-8, 1995 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7479716

RESUMO

Histidyl-tRNA synthetase (HisRS) has been purified from the extreme thermophile Thermus thermophilus. The protein has been crystallized separately with histidine and with its cognate tRNAHis. Both crystals have been obtained using the vapor diffusion method with ammonium sulphate as precipitant. The crystals of HisRS with histidine belong to the spacegroup P2(1)2(1)2 with cell parameters a = 171.3 A, b = 214.7 A, c = 49.3 A, alpha = beta = gamma = 90 degrees. A complete data set to a resolution of 2.7A with an Rmerge on intensities of 4.1% has been collected on a single frozen crystal. A partial data set collected on a crystal of HisRS in complex with tRNAHis shows that the crystals are tetragonal with cell parameters a = b = 232 A, c = 559 A, alpha = beta = gamma = 90 degrees and diffract to about 4.5 A resolution.


Assuntos
Histidina-tRNA Ligase/química , RNA de Transferência de Histidina/química , Thermus thermophilus/química , Cristalografia por Raios X , Histidina/química , Conformação Molecular , Ligação Proteica , Thermus thermophilus/enzimologia
18.
Structure ; 3(4): 341-52, 1995 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-7613865

RESUMO

BACKGROUND: Seryl-tRNA synthetase is a homodimeric class II aminoacyl-tRNA synthetase that specifically charges cognate tRNAs with serine. In the first step of this two-step reaction, Mg.ATP and serine react to form the activated intermediate, seryl-adenylate. The serine is subsequently transferred to the 3'-end of the tRNA. In common with most other aminoacyl-tRNA synthetases, seryl-tRNA synthetase is capable of synthesizing diadenosine tetraphosphate (Ap4A) from the enzyme-bound adenylate intermediate and a second molecule of ATP. Understanding the structural basis for the substrate specificity and the catalytic mechanism of aminoacyl-tRNA synthetases is of considerable general interest because of the fundamental importance of these enzymes to protein biosynthesis in all living cells. RESULTS: Crystal structures of three complexes of seryl-tRNA synthetase from Thermus thermophilus are described. The first complex is of the enzyme with ATP and Mn2+. The ATP is found in an unusual bent conformation, stabilized by interactions with conserved arginines and three manganese ions. The second complex contains seryl-adenylate in the active site, enzymatically produced in the crystal after soaking with ATP, serine and Mn2+. The third complex is between the enzyme, Ap4A and Mn2+. All three structures exhibit a common Mn2+ site in which the cation is coordinated by two active-site residues in addition to the alpha-phosphate group from the bound ligands. CONCLUSIONS: Superposition of these structures allows a common reaction mechanism for seryl-adenylate and Ap4A formation to be proposed. The bent conformation of the ATP and the position of the serine are consistent with nucleophilic attack of the serine carboxyl group on the alpha-phosphate by an in-line displacement mechanism leading to the release of the inorganic pyrophosphate. A second ATP molecule can bind with its gamma-phosphate group in the same position as the beta-phosphate of the original ATP. This can attack the seryl-adenylate with the formation of Ap4A by an identical in-line mechanism in the reverse direction. The divalent cation is essential for both reactions and may be directly involved in stabilizing the transition state.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Proteínas de Bactérias/química , Fosfatos de Dinucleosídeos/biossíntese , Modelos Moleculares , Conformação Proteica , RNA de Transferência de Serina/biossíntese , Serina-tRNA Ligase/química , Serina/biossíntese , Monofosfato de Adenosina/biossíntese , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Manganês/metabolismo , Conformação Molecular , Dados de Sequência Molecular , Serina-tRNA Ligase/metabolismo , Especificidade por Substrato , Thermus thermophilus/enzimologia
19.
Proteins ; 21(3): 261-4, 1995 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-7540304

RESUMO

Lysyl-tRNA synthetase from Thermus thermophilus has been cocrystallized with either its cognate tRNAlys or Escherichia coli tRNAlys using ammonium sulfate as precipitant. The crystals grow from solutions containing a 1:2.5 stoichiometry of synthetase dimer to tRNA in 18-22% ammonium sulfate in 50 mM Tris-maleate buffer at pH 7.5. Both complexes form square prismatic, tetragonal crystals with very similar unit cell parameters (a = b = 233 A, c = 119 A) and diffract to at least 2.7 A resolution. However the homocomplex is of space group P42(1)2 and the heterocomplex of space group I422.


Assuntos
Escherichia coli/genética , Lisina-tRNA Ligase/química , RNA de Transferência de Lisina/química , Thermus thermophilus/enzimologia , Thermus thermophilus/genética , Cristalização , Cristalografia por Raios X , RNA Bacteriano/química , Temperatura , Fatores de Tempo
20.
Science ; 263(5152): 1404-10, 1994 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-8128220

RESUMO

The crystal structure of Thermus thermophilus seryl-transfer RNA synthetase, a class 2 aminoacyl-tRNA synthetase, complexed with a single tRNA(Ser) molecule was solved at 2.9 A resolution. The structure revealed how insertion of conserved base G20b from the D loop into the core of the tRNA determines the orientation of the long variable arm, which is a characteristic feature of most serine specific tRNAs. On tRNA binding, the antiparallel coiled-coil domain of one subunit of the synthetase makes contacts with the variable arm and T psi C loop of the tRNA and directs the acceptor stem of the tRNA into the active site of the other subunit. Specificity depends principally on recognition of the shape of tRNA(Ser) through backbone contacts and secondarily on sequence specific interactions.


Assuntos
Aminoacil-RNA de Transferência/química , Serina-tRNA Ligase/química , Thermus thermophilus/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Composição de Bases , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Estrutura Secundária de Proteína , Aminoacil-RNA de Transferência/metabolismo , Serina-tRNA Ligase/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...