Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioelectron Med ; 10(1): 15, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880906

RESUMO

BACKGROUND: Vagus nerve stimulation (VNS) is an established therapy for treating a variety of chronic diseases, such as epilepsy, depression, obesity, and for stroke rehabilitation. However, lack of precision and side-effects have hindered its efficacy and extension to new conditions. Achieving a better understanding of the relationship between VNS parameters and neural and physiological responses is therefore necessary to enable the design of personalized dosing procedures and improve precision and efficacy of VNS therapies. METHODS: We used biomarkers from recorded evoked fiber activity and short-term physiological responses (throat muscle, cardiac and respiratory activity) to understand the response to a wide range of VNS parameters in anaesthetised pigs. Using signal processing, Gaussian processes (GP) and parametric regression models we analyse the relationship between VNS parameters and neural and physiological responses. RESULTS: Firstly, we illustrate how considering multiple stimulation parameters in VNS dosing can improve the efficacy and precision of VNS therapies. Secondly, we describe the relationship between different VNS parameters and the evoked fiber activity and show how spatially selective electrodes can be used to improve fiber recruitment. Thirdly, we provide a detailed exploration of the relationship between the activations of neural fiber types and different physiological effects. Finally, based on these results, we discuss how recordings of evoked fiber activity can help design VNS dosing procedures that optimize short-term physiological effects safely and efficiently. CONCLUSION: Understanding of evoked fiber activity during VNS provide powerful biomarkers that could improve the precision, safety and efficacy of VNS therapies.

2.
J Neural Eng ; 21(2)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38479016

RESUMO

Objective.In bioelectronic medicine, neuromodulation therapies induce neural signals to the brain or organs, modifying their function. Stimulation devices capable of triggering exogenous neural signals using electrical waveforms require a complex and multi-dimensional parameter space to control such waveforms. Determining the best combination of parameters (waveform optimization or dosing) for treating a particular patient's illness is therefore challenging. Comprehensive parameter searching for an optimal stimulation effect is often infeasible in a clinical setting due to the size of the parameter space. Restricting this space, however, may lead to suboptimal therapeutic results, reduced responder rates, and adverse effects.Approach. As an alternative to a full parameter search, we present a flexible machine learning, data acquisition, and processing framework for optimizing neural stimulation parameters, requiring as few steps as possible using Bayesian optimization. This optimization builds a model of the neural and physiological responses to stimulations, enabling it to optimize stimulation parameters and provide estimates of the accuracy of the response model. The vagus nerve (VN) innervates, among other thoracic and visceral organs, the heart, thus controlling heart rate (HR), making it an ideal candidate for demonstrating the effectiveness of our approach.Main results.The efficacy of our optimization approach was first evaluated on simulated neural responses, then applied to VN stimulation intraoperatively in porcine subjects. Optimization converged quickly on parameters achieving target HRs and optimizing neural B-fiber activations despite high intersubject variability.Significance.An optimized stimulation waveform was achieved in real time with far fewer stimulations than required by alternative optimization strategies, thus minimizing exposure to side effects. Uncertainty estimates helped avoiding stimulations outside a safe range. Our approach shows that a complex set of neural stimulation parameters can be optimized in real-time for a patient to achieve a personalized precision dosing.


Assuntos
Estimulação do Nervo Vago , Humanos , Animais , Suínos , Estimulação do Nervo Vago/métodos , Teorema de Bayes , Nervo Vago/fisiologia , Coração , Fibras Nervosas Mielinizadas
3.
Bioelectricity ; 2(4): 321-327, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34476364

RESUMO

Bioelectric medicine leverages natural signaling pathways in the nervous system to counteract organ dysfunction. This novel approach has potential to address conditions with unmet needs, including heart failure, hypertension, inflammation, arthritis, asthma, Alzheimer's disease, and diabetes. Neural therapies, which target the brain, spinal cord, or peripheral nerves, are already being applied to conditions such as epilepsy, Parkinson's, and chronic pain. While today's therapies have made exciting advancements, their open-loop design-where stimulation is administered without collecting feedback-means that results can be variable and devices do not work for everyone. Stimulation effects are sensitive to changes in neural tissue, nerve excitability, patient position, and more. Closing the loop by providing neural or non-neural biomarkers to the system can guide therapy by providing additional insights into stimulation effects and overall patient condition. Devices currently on the market use recorded biomarkers to close the loop and improve therapy. The future of bioelectric medicine is more holistically personalized. Collected data will be used for increasingly precise application of neural stimulations to achieve therapeutic effects. To achieve this future, advances are needed in device design, implanted and computational technologies, and scientific/medical interpretation of neural activity. Research and commercial devices are enabling the development of multiple levels of responsiveness to neural, physiological, and environmental changes. This includes developing suitable implanted technologies for high bandwidth brain/machine interfaces and addressing the challenge of neural or state biomarker decoding. Consistent progress is being made in these challenges toward the long-term vision of automatically and holistically personalized care for chronic health conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...