Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 124(37): 8167-8178, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32804501

RESUMO

The interfacial region of the graphene oxide (GO)-water system is nonhomogenous due to the presence of two distinct domains: an oxygen-rich surface and a graphene-like region. The experimental vibrational sum-frequency generation (vSFG) spectra are distinctly different for the fully oxidized GO-water interface as compared to the reduced GO-water case. Computational investigations using ab initio molecular dynamics were performed to determine the molecular origins of the different spectroscopic features. The simulations were first validated by comparing the simulated vSFG spectra to those from the experiment, and the contributions to the spectra from different hydrogen bonding environments and interfacial water orientations were determined as a function of the oxidation level of the GO sheet. The ab initio simulations also revealed the reactive nature of the GO-water interface.

2.
J Hazard Mater ; 398: 122853, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32768813

RESUMO

Understanding mechanistic pathways to radiolytic hydrogen generation by metal oxyhydroxide nanomaterials is challenging because of the difficulties of distinguishing key locations of OH bond scission, from structural interiors to hydroxylated surfaces to physi-sorbed water molecules. Here we exploited the interface-selectivity of vibrational sum frequency generation (VSFG) to isolate surface versus bulk hydroxyl groups for gibbsite and boehmite nanoplatelets before and after 60Co irradiation at dose levels of approximately 7.0 and 29.6 Mrad. While high-resolution microscopy revealed no effect on particle bulk and surface structures, VSFG results clearly indicated up to 83% and 94% radiation-induced surface OH bond scission for gibbsite and boehmite, respectively, a substantially higher proportion than observed for interior OH groups by IR and Raman spectroscopy. Electron paramagnetic spectroscopy revealed that the major radiolysis products bound in the mineral structures are trapped electrons, O, O2- and possibly F-centers in gibbsite, and H, O and O3- in boehmite, which persist on the time frame of several months. The entrapped radiolysis products appear to be highly stable, enduring re-hydration of particle surfaces, and likely reflect a permanent adjustment in the thermodynamic stabilities of these nanomaterials.

3.
J Am Chem Soc ; 142(15): 6991-7000, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32233477

RESUMO

The structure and ultrafast dynamics of the electric double layer (EDL) are central to chemical reactivity and physical properties at solid/aqueous interfaces. While the Gouy-Chapman-Stern model is widely used to describe EDLs, it is solely based on the macroscopic electrostatic attraction of electrolytes for the charged surfaces. Structure and dynamics in the Stern layer are, however, more complex because of competing effects due to the localized surface charge distribution, surface-solvent-ion correlations, and the interfacial hydrogen bonding environment. Here, we report combined time-resolved vibrational sum frequency generation (TR-vSFG) spectroscopy with ab initio DFT-based molecular dynamics simulations (AIMD/DFT-MD) to get direct access to the molecular-level understanding of how ions change the structure and dynamics of the EDL. We show that innersphere adsorbed ions tune the hydrophobicity of the silica-aqueous interface by shifting the structural makeup in the Stern layer from dominant water-surface interactions to water-water interactions. This drives an initially inhomogeneous interfacial water coordination landscape observed at the neat interface toward a homogeneous, highly interconnected in-plane 2D hydrogen bonding (2D-HB) network at the ionic interface, reminiscent of the canonical, hydrophobic air-water interface. This ion-induced transformation results in a characteristic decrease of the vibrational lifetime (T1) of excited interfacial O-H stretching modes from T1 ∼ 600 fs to T1 ∼ 250 fs. Hence, we propose that the T1 determined by TR-vSFG in combination with DFT-MD simulations can be widely used for a quantitative spectroscopic probe of the ion kosmotropic/chaotropic effect at aqueous interfaces as well as of the ion-induced surface hydrophobicity.

4.
Angew Chem Int Ed Engl ; 59(6): 2323-2327, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31765512

RESUMO

Organothiol monolayers on metal substrates (Au, Ag, Cu) and their use in a wide variety of applications have been extensively studied. Here, the growth of layers of organothiols directly onto muscovite mica is demonstrated using a simple procedure. Atomic force microscopy, surface X-ray diffraction, and vibrational sum-frequency generation IR spectroscopy studies revealed that organothiols with various functional endgroups could be self-assembled into (water) stable and adaptable ultra-flat organothiol monolayers over homogenous areas as large as 1 cm2 . The strength of the mica-organothiol interactions could be tuned by exchanging the potassium surface ions for copper ions. Several of these organothiol monolayers were subsequently used as a template for calcite growth.

5.
Chem Sci ; 10(36): 8390-8398, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31803417

RESUMO

Atmospheric aerosol-cloud interactions remain among the least understood processes within the climate system, leaving large uncertainties in the prediction of future climates. In particular, the nature of the surfaces of aerosol particles formed from biogenic terpenes, such as α-pinene, is poorly understood despite the importance of surface phenomena in their formation, growth, radiative properties, and ultimate fate. Herein we report the coupling of a site-specific deuterium labeling strategy with vibrational sum frequency generation (SFG) spectroscopy to probe the surface C-H oscillators in α-pinene-derived secondary organic aerosol material (SOM) generated in an atmospheric flow tube reactor. Three α-pinene isotopologues with methylene bridge, bridgehead methine, allylic, and vinyl deuteration were synthesized and their vapor phase SFG spectra were compared to that of unlabeled α-pinene. Subsequent analysis of the SFG spectra of their corresponding SOM revealed that deuteration of the bridge methylene C-H oscillators present on the cyclobutane ring in α-pinene leads to a considerable signal intensity decrease (ca. 30-40%), meriting speculation that the cyclobutane moiety remains largely intact within the surface bound species present in the SOM formed upon α-pinene oxidation. These insights provide further clues as to the complexity of aerosol particle surfaces, and establish a framework for future investigations of the heterogeneous interactions between precursor terpenes and particle surfaces that lead to aerosol particle growth under dynamically changing conditions in the atmosphere.

6.
J Phys Chem B ; 123(42): 8931-8938, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31553603

RESUMO

A combination of surface tension, surface-specific vibrational spectroscopy, and differential scanning calorimetry experiments was performed to examine the ability of lipid films to enrich interfacial organic content by attracting soluble, neutral saccharides from bulk aqueous solution. This "cooperative adsorption" hypothesis has been proposed as a possible source of the high organic fractions found in sea spray aerosols and is believed to be responsible for cryoprotection in some organisms. Experiments described in this work show that the neutral disaccharide trehalose (Tre) is drawn to lipid films composed of dipalmitoylphosphatidylcholine (DPPC), a saturated lipid that is a major component of most eukaryotic cells. The effects of Tre on DPPC monolayer structure and organization were tested with tightly packed monolayers in the two-dimensional solid phase (40 Å2/molecule) and more expanded monolayers in the two-dimensional liquid condensed phase (55 Å2/molecule). Surface tension data show that DPPC monolayer behavior remains largely unchanged until Tre bulk concentrations are sufficiently high (≥50 mM). In contrast, surface-specific vibrational sum frequency spectra show that when Tre bulk concentrations are ≥10 mM, DPPC monolayers in their liquid condensed state (55 Å2/molecule) became more ordered, implying relatively strong noncovalent interactions between the two species. Tre also induces changes in DPPC bilayer behavior as evidenced by a gel-to-liquid crystalline phase transition temperature that increases with increasing Tre concentration. This result suggests that Tre associates with the DPPC headgroups in very specific ways leading to partial dehydration. Together, these results support the cooperative adsorption mechanism under some circumstances, namely, that there is a minimum aqueous phase Tre concentration required to induce observable structural changes in a lipid monolayer and that these effects are most pronounced with DPPC monolayers in their liquid condensed state compared to those of a tightly packed two-dimensional solid.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Ar , Microscopia Óptica não Linear , Trealose/química , Água , Adsorção , Varredura Diferencial de Calorimetria
7.
J Colloid Interface Sci ; 555: 810-817, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31425917

RESUMO

HYPOTHESIS: Water vapor binding to metal oxide surfaces produces thin water films with properties controlled by interactions with surface hydroxo sites. Hydrogen bonding populations vary across films and induce different molecular orientations than at the surface of liquid water. Identifying these differences can open possibilities for tailoring film-mediated catalytic reactions by choice of the supporting metal oxide substrate. EXPERIMENTS: The (0001) face of a single sapphire (α-Al2O3) sample exposed to water vapor and the surface of liquid water were probed by polarization dependent Sum Frequency Generation-Vibration Spectroscopy (SFG-VS). Molecular dynamics (MD) provided insight into the hydrogen bond populations and molecular orientations across films and liquid water. FINDINGS: SFG-VS revealed a submonolayer film on sapphire exposed to 43% relative humidity (R.H.), and a multilayer film at 78% R.H. Polarization dependent SFG-VS spectra showed that median tilt angles of free OH bonds on the top of films are at ∼43° from the normal of the (0001) face but at 38° on neat liquid water. These values align with MD simulations, which also show that up to 36% of all OH bonds on films are free. This offers new means for understanding how interfacial reactions on sapphire-supported water films could contrast with those involving liquid water.

8.
J Phys Chem A ; 123(26): 5621-5632, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31244118

RESUMO

Surface tension, surface-specific vibrational spectroscopy and differential scanning calorimetry measurements were all used to test cooperative adsorption of glucuronic acid (GU) to DPPC monolayers adsorbed to the aqueous/vapor interface. Experiments were performed using GU solutions prepared in Millipore water and in carbonate/bicarbonate solutions buffered to a pH of 9.0. The effects of GU on DPPC monolayer structure and organization were carried out with tightly packed monolayers (40 Å2/DPPC) and monolayers in their liquid condensed phase (55 Å2/molecule). Surface tension data show that GU concentrations of 50 mM lead to expanded DPPC monolayers with diminished surface tensions (or higher surface pressures) at a given DPPC coverage relative to monolayers on pure water. With unbuffered solutions, GU induces significant ordering within liquid condensed monolayers although the effects of GU on tightly packed DPPC monolayers are less pronounced. GU also induces a second, higher melting temperature in DPPC vesicles implying that GU (at sufficiently high concentrations) strengthens lipid-lipid cohesion, possibly by replacing water solvating the DPPC headgroups. Together, these observations all support a cooperative adsorption mechanism. In buffer solutions, the effects of dissolved GU on DPPC structure and organization are muted. Only at sufficiently high GU concentrations (when the solution's buffering capacity has been exceeded) do the data again show evidence of cooperative adsorption. These findings place limits on cooperative adsorption's ability to enrich interfacial organic content in alkaline environmental systems such as oceans.

9.
J Am Chem Soc ; 141(5): 2135-2142, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30615440

RESUMO

Muscovite mica (001) is a widely used model surface for controlling molecular assembly and a common substrate for environmental adsorption processes. The mica (001) surface displays near-trigonal symmetry, but many molecular adsorbates-including water-exhibit unequal probabilities of alignment along its three nominally equivalent lattice directions. Buried hydroxyl groups within the muscovite structure are speculated to be responsible, but direct evidence is lacking. Here, we utilize vibrational sum frequency generation spectroscopy (vSFG) to characterize the orientation and hydrogen-bonding environment of near-surface hydroxyls inside mica. Multiple distinct peaks are detected in the O-H stretch region, which we attribute to Si/Al substitution in the SiO4 tetrahedron and K+ ion adsorption above the hydroxyls based on density functional theory simulations. Our findings demonstrate that vSFG can identify the absolute orientation of -OH groups and, hence, the surface termination at a mica surface, providing a means to investigate how -OH groups influence molecular adsorption and better understand mica stacking-sequences and physical behavior.

10.
Opt Lett ; 43(18): 4402-4405, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30211875

RESUMO

We report the generation of ultrabroadband mid-infrared (mid-IR) pulses by noncollinear difference frequency mixing. The signal and the idler output beams of an optical parametric amplifier are combined in a silver thiogallate crystal (AgGaS2) to generate mid-infrared radiation. We show that a noncollinear geometry facilitates broadband phase matching. Spectral bandwidths up to 1750 cm-1 were obtained at an external noncollinear angle of 4.2 deg, which is more than three times broader than in a collinear geometry. The broadband spectrum is tunable in the range of 1500-4500 cm-1. Pulse energies up to 1 µJ were achieved. The broadband pulses were used in sum frequency generation in ZnSe and in vibrational absorption spectroscopy experiments of liquid samples.

11.
Opt Lett ; 38(23): 5008-11, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24281496

RESUMO

We describe temporal compression of ultrabroadband, few microjoule mid-infrared (mid-IR) pulses from a noncollinear optical parametric amplifier (NOPA) employed in a sum-frequency generation (SFG) vibrational spectroscopic system, operating in total-internal-reflection geometry. The propagation of the mid-IR beam through optical materials results in a significant temporal chirp at the probed interface, which is analyzed and corrected by properly managing the total dispersion of materials introduced into the mid-IR beam path. By employing the simultaneous spatial and temporal focusing of the broadband infrared pulses at the probed interface, we achieve a sub-50-fs full width at half-maximum (FWHM) for the instrument response function, measured via SFG cross correlation of the ultrashort mid-IR pulses with an ultrashort (~30 fs) near-IR pulse from a synchronized, independently tunable NOPA. From the SFG cross-correlation FWHM, we extract a sub-30-fs mid-IR pulse duration, making it a suitable SFG spectroscopic system to investigate vibrational dynamics in hydrogen-bonded systems at interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...