Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(38): 89430-89441, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37454006

RESUMO

This study reports the full recycling of dolomite waste (DW) in the fabrication of a novel cementitious material through a facile and eco-efficient method. The proposed technique includes mixing different alkali-activators (i.e., NaOH and Na2SiO3) with DW powder, followed by curing at room temperature. Based on the alkali-activator type, sodium oxide concentration, and curing time, the formulated mixtures yield a wide range of compressive strengths. When DW powder is mixed with different contents of NaOH (2.5, 5, and 7.5 wt.% Na2O), the resulting hardened materials exhibited modest compressive strengths (less than 11 MPa) due to the formation of the gaylussite Na2CO3·CaCO3·5H2O phase. Concerning the other chemical activator (Na2SiO3), a significant improvement in the compressive strengths of the resulted hardened materials was detected. This was ascribed to the formation of calcium silicate hydrate, with a high binding capacity, through the exchange reaction between Na2SiO3 and CaCO3 inside DW. The sample activated with Na2SiO3 (silica modulus of 1.5) equivalent to Na2O of 7.5 wt.% offered the highest 90-day compressive strength (34 MPa). At silica modulus lower or higher than 1.5, a noticeable decrease in the performance of the hardened materials was observed, which could be attributed to the alter in binding phase composition. Overall, the present work presented a new approach in utilizing the available and low cost carbonate-based wastes as main precursors in the family of promising alkali-activated materials.


Assuntos
Carbonatos , Álcalis , Pós , Hidróxido de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...