Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 356: 124248, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810674

RESUMO

Non-sewered sanitation systems (NSSS) are identified as significant contributors of greenhouse gases (GHGs), primarily due to biological processes occurring within the containment systems. In unsealed or unlined containment systems like pit latrines, the emissions are influenced by moisture. This work quantified the GHG emission from unlined or unsealed containments prevalent in Nepal and compared it with sealed containment-like septic tanks, where the chances of groundwater (GW) inundation are low. The modeled GW data extracted from the secondary sources were validated with available national data. The emissions were quantified using the Intergovernmental Panel for Climate Change (IPCC) model for different ecological and provincial divisions of Nepal. Spatial representation for the results was done using the Geographical Information System (GIS) tool. The total methane (CH4) emission occurring from the various NSSS was determined to be 2618 Gg CO2 e per year which is almost twice the emission from the waste sector in 2011, as reported by the recent national communication submitted to the United Nations Framework Convention on Climate Change (UNFCC). Variation of the CH4 emission was found to be prominent in lowlands (Terai region) with total national emissions of 1329.37 Gg CO2e per year. The lowland has a shallow GW table that can easily inundate the unlined containments like pit latrines thus contributing to more anaerobic conditions which may lead to higher CH4 emissions compared to containments in mid and highlands. This study concludes that the GHG emissions occurring from NSSS are substantial and addressing these emissions can help fulfil the Nationally Determined Contributions (NDCs) in the waste sector.

2.
Heliyon ; 9(9): e19947, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809600

RESUMO

On-site sanitation systems (OSS) are a source of greenhouse gas (GHG) emissions. Although efforts have been made recently to measure and quantify emissions from septic tanks using various field-based methods, the vast majority of published literature reporting GHG emissions from OSS units (e.g., pits and tanks) is based on non-empirical evidence. This systematic review presents an overview and limitations of field-based methods used for the quantification of GHG emissions from OSS. Papers published in English were searched in three databases: Google Scholar, PubMed, and Directory of Articles and Journals. Peer-reviewed papers that reported field-based methods applied to containment units in OSS were included in this study. Only eight out of 2085 papers met the inclusion criteria with septic tanks as the sole technology reported and were thus, considered for the review. Most of the studies have been conducted in middle- and high-income countries. Field-based measurements of GHGs are conducted using a flux chamber (FC) and the most commonly used FC methods are (a) the modified simple static FC, (b) automated static FC, and (c) floating FC. Data reported in published studies do not provide sufficient information on the calibration and validation of the results from the FCs used. The complex FC designs, laborious fieldwork operations, and reliance on expensive, specialist equipment, suggest that such methods may not be suitable in Low and Middle-Income countries (LMICs), where resources and access to laboratory facilities are limited. Also, the complexity of pits and tank typology in LMICs (i.e., unstandardised designs and sizes) may be a challenge to the use of FCs with fixed dimensions and set operational conditions. The variation in the quantification methods and resulting emission rates among the studies indicates that gaps prevail in the use of existing methods. Therefore, there is still a need for a simple field-based, easily adaptable FC method with adequate calibration and validation that can help in reliably quantifying the emissions from different OSS in any LMICs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...