Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dialogues Health ; 4: 100179, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38813579

RESUMO

Background: During the COVID-19 pandemic there was a plethora of dynamical forecasting models created, but their ability to effectively describe future trajectories of disease was mixed. A major challenge in evaluating future case trends was forecasting the behavior of individuals. When behavior was incorporated into models, it was primarily incorporated exogenously (e.g., fitting to cellphone mobility data). Fewer models incorporated behavior endogenously (e.g., dynamically changing a model parameter throughout the simulation). Methods: This review aimed to qualitatively characterize models that included an adaptive (endogenous) behavioral element in the context of COVID-19 transmission. We categorized studies into three approaches: 1) feedback loops, 2) game theory/utility theory, and 3) information/opinion spread. Findings: Of the 92 included studies, 72% employed a feedback loop, 27% used game/utility theory, and 9% used a model if information/opinion spread. Among all studies, 89% used a compartmental model alone or in combination with other model types. Similarly, 15% used a network model, 11% used an agent-based model, 7% used a system dynamics model, and 1% used a Markov chain model. Descriptors of behavior change included mask-wearing, social distancing, vaccination, and others. Sixty-eight percent of studies calibrated their model to observed data and 25% compared simulated forecasts to observed data. Forty-one percent of studies compared versions of their model with and without endogenous behavior. Models with endogenous behavior tended to show a smaller and delayed initial peak with subsequent periodic waves. Interpretation: While many COVID-19 models incorporated behavior exogenously, these approaches may fail to capture future adaptations in human behavior, resulting in under- or overestimates of disease burden. By incorporating behavior endogenously, the next generation of infectious disease models could more effectively predict outcomes so that decision makers can better prepare for and respond to epidemics. Funding: This study was funded in-part by Centers for Disease Control and Prevention (CDC) MInD-Healthcare Program (1U01CK000536), the National Science Foundation (NSF) Modeling Dynamic Disease-Behavior Feedbacks for Improved Epidemic Prediction and Response grant (2229996), and the NSF PIPP Phase I: Evaluating the Effectiveness of Messaging and Modeling during Pandemics grant (2200256).

2.
Genetics ; 205(1): 101-112, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27866169

RESUMO

We report a new mechanism for allelic dominance in regulatory genetic interactions that we call binding dominance. We investigated a biophysical model of gene regulation, where the fractional occupancy of a transcription factor (TF) on the cis-regulated promoter site it binds to is determined by binding energy (-ΔG) and TF dosage. Transcription and gene expression proceed when the TF is bound to the promoter. In diploids, individuals may be heterozygous at the cis-site, at the TF's coding region, or at the TF's own promoter, which determines allele-specific dosage. We find that when the TF's coding region is heterozygous, TF alleles compete for occupancy at the cis-sites and the tighter-binding TF is dominant in proportion to the difference in binding strength. When the TF's own promoter is heterozygous, the TF produced at the higher dosage is also dominant. Cis-site heterozygotes have additive expression and therefore codominant phenotypes. Binding dominance propagates to affect the expression of downstream loci and it is sensitive in both magnitude and direction to genetic background, but its detectability often attenuates. While binding dominance is inevitable at the molecular level, it is difficult to detect in the phenotype under some biophysical conditions, more so when TF dosage is high and allele-specific binding affinities are similar. A body of empirical research on the biophysics of TF binding demonstrates the plausibility of this mechanism of dominance, but studies of gene expression under competitive binding in heterozygotes in a diversity of genetic backgrounds are needed.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Genes Dominantes , Modelos Genéticos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Alelos , Sítios de Ligação , Ligação Competitiva , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica
3.
Genetics ; 198(4): 1645-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25313130

RESUMO

Hybrid incompatibility can result from gene misregulation produced by divergence in trans-acting regulatory factors and their cis-regulatory targets. However, change in trans-acting factors may be constrained by pleiotropy, which would in turn limit the evolution of incompatibility. We employed a mechanistically explicit bioenergetic model of gene expression wherein parameter combinations (number of transcription factor molecules, energetic properties of binding to the regulatory site, and genomic background size) determine the shape of the genotype-phenotype (G-P) map, and interacting allelic variants of mutable cis and trans sites determine the phenotype along that map. Misregulation occurs when the phenotype differs from its optimal value. We simulated a pleiotropic regulatory pathway involving a positively selected and a conserved trait regulated by a shared transcription factor (TF), with two populations evolving in parallel. Pleiotropic constraints shifted evolution in the positively selected trait to its cis-regulatory locus. We nevertheless found that the TF genotypes often evolved, accompanied by compensatory evolution in the conserved trait, and both traits contributed to hybrid misregulation. Compensatory evolution resulted in "developmental system drift," whereby the regulatory basis of the conserved phenotype changed although the phenotype itself did not. Pleiotropic constraints became stronger and in some cases prohibitive when the bioenergetic properties of the molecular interaction produced a G-P map that was too steep. Likewise, compensatory evolution slowed and hybrid misregulation was not evident when the G-P map was too shallow. A broad pleiotropic "sweet spot" nevertheless existed where evolutionary constraints were moderate to weak, permitting substantial hybrid misregulation in both traits. None of these pleiotropic constraints manifested when the TF contained nonrecombining domains independently regulating the respective traits.


Assuntos
Regulação da Expressão Gênica , Hibridização Genética , Modelos Biológicos , Fatores de Transcrição/metabolismo , Evolução Biológica , Mutação , Taxa de Mutação , Ligação Proteica , Locos de Características Quantitativas , Característica Quantitativa Herdável , Seleção Genética
4.
Genetics ; 198(3): 1155-66, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25173845

RESUMO

Postzygotic isolation between incipient species results from the accumulation of incompatibilities that arise as a consequence of genetic divergence. When phenotypes are determined by regulatory interactions, hybrid incompatibility can evolve even as a consequence of parallel adaptation in parental populations because interacting genes can produce the same phenotype through incompatible allelic combinations. We explore the evolutionary conditions that promote and constrain hybrid incompatibility in regulatory networks using a bioenergetic model (combining thermodynamics and kinetics) of transcriptional regulation, considering the bioenergetic basis of molecular interactions between transcription factors (TFs) and their binding sites. The bioenergetic parameters consider the free energy of formation of the bond between the TF and its binding site and the availability of TFs in the intracellular environment. Together these determine fractional occupancy of the TF on the promoter site, the degree of subsequent gene expression and in diploids, and the degree of dominance among allelic interactions. This results in a sigmoid genotype-phenotype map and fitness landscape, with the details of the shape determining the degree of bioenergetic evolutionary constraint on hybrid incompatibility. Using individual-based simulations, we subjected two allopatric populations to parallel directional or stabilizing selection. Misregulation of hybrid gene expression occurred under either type of selection, although it evolved faster under directional selection. Under directional selection, the extent of hybrid incompatibility increased with the slope of the genotype-phenotype map near the derived parental expression level. Under stabilizing selection, hybrid incompatibility arose from compensatory mutations and was greater when the bioenergetic properties of the interaction caused the space of nearly neutral genotypes around the stable expression level to be wide. F2's showed higher hybrid incompatibility than F1's to the extent that the bioenergetic properties favored dominant regulatory interactions. The present model is a mechanistically explicit case of the Bateson-Dobzhansky-Muller model, connecting environmental selective pressure to hybrid incompatibility through the molecular mechanism of regulatory divergence. The bioenergetic parameters that determine expression represent measurable properties of transcriptional regulation, providing a predictive framework for empirical studies of how phenotypic evolution results in epistatic incompatibility at the molecular level in hybrids.


Assuntos
Metabolismo Energético , Hibridização Genética , Modelos Biológicos , Fatores de Transcrição/metabolismo , Alelos , Simulação por Computador , Cruzamentos Genéticos , Regulação da Expressão Gênica , Genótipo , Fenótipo , Densidade Demográfica , Ligação Proteica , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...