Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1268643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731990

RESUMO

The evolution of the vascular system has led to the formation of conducting and supporting elements and those that are involved in the mechanisms of storage and defense against the influence of biotic and abiotic factors. In the case of the latter, the general evolutionary trend was probably related to a change in their arrangement, i.e. from cells scattered throughout the tissue to cells organized into ducts or cavities. These cells, regardless of whether they occur alone or in a cellular structure, are an important defense element of trees, having the ability to synthesize, among others, natural resins. In the tracheid-based secondary xylem of gymnosperms, the resin ducts, which consist of secretory cells, are of two types: axial, interspersed between the tracheids, and radial, carried in some rays. They are interconnected and form a continuous system. On the other hand, in the tracheid-based secondary xylem of monocotyledons, the resin-producing secretory cells do not form specialized structures. This review summarizes knowledge on the morpho-anatomical features of various types of resin-releasing secretory cells in relation to their: (i) location, (ii) origin, (iii) mechanism of formation, (iv) and ecological significance.

2.
Planta ; 256(3): 52, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906444

RESUMO

MAIN CONCLUSION: In Dracaena draco trunks, the primary and secondary xylem conduits co-function. Both are resistant to embolism; however, secondary conduits are mainly involved in mechanical support. Monocotyledonous dragon trees (Dracaena spp., Asparagaceae) possess in their trunks both primary and secondary xylem elements, organized into vascular bundles, that for dozens of years co-function and enable the plant to transport water efficiently as well as provide mechanical support. Here, based on the modified Hagen-Poiseuille's formula, we examined the functional anatomical xylem traits of the trunk in two young D. draco individuals to compare their function in both primary and secondary growth. We provided analyses of the: (i) conduits surface sculpture and their cell walls thickness, (ii) conduit diameter and frequency, (iii) hydraulically weighted diameter, (iv) theoretical hydraulic conductivity, (v) area-weighted mean conduit diameter, as well as (vi) vulnerability index. The conduits in primary growth, located in the central part of the trunk, were loosely arranged, had thinner cell walls, larger mean hydraulically weighted diameter, and significantly larger value of the theoretical hydraulic conductivity than conduits in secondary growth, which form a rigid cylinder near the trunk surface. Based on the vulnerability index, both primary and secondary conduits are resistant to embolism. Taking into account the distribution within a trunk, the secondary growth conduits seems to be mainly involved in mechanical support as they are twisted, form structures similar to sailing ropes and have thick cell walls, and a peripheral localization. D. draco has been adapted to an environment with water deficit by distinctive, spatial separation of the xylem elements fulfilling supportive and conductive functions.


Assuntos
Dracaena , Árvores , Adaptação Fisiológica , Árvores/metabolismo , Água/metabolismo , Xilema/metabolismo
3.
Chemoecology ; 26: 101-105, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27239099

RESUMO

Dragon's blood is the name given to a red exudate produced by some plant species belonging to the genera Daemonorops, Dracaena, Croton and Pterocarpus. These are endemic to various parts of the globe. It is classified as a resin or latex depending on its mode of secretion and its chemical composition, which is species specific. This red substance functions in defence and is produced (a) constitutively and stored in preformed anatomical structures, or (b) by induction in response to traumatic events, such as mechanical injury, pathogen attack or invasion by insects. Apart from its defensive role in plants, dragon's blood is also a valuable natural resource renowned since antiquity for its diverse medicinal properties and uses in art. Despite the great importance of dragon's blood, our knowledge of the biological basis for its secretion is still incomplete. This review summarizes recent advances in the study of the anatomical basis for its secretion, and discusses its classification and ecological function. Bringing some clarity to these issues may also help in the commercial sourcing of dragon's blood.

4.
Bot Rev ; 81(2): 150-161, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25972616

RESUMO

This review highlights key historical works and the recent research on the monocot lateral meristems. It discusses the terminological issues (elucidating the terminological inconsistency found in the literature concerned), origination of secondary meristems, their morphology and characteristic features of the derivative tissues. Also the monocot cambium response to hormonal and gravitational stimuli is discussed. The summarized inputs in the present note are believed to renew interest in this field, which is important for a more comprehensive understanding of the abnormal secondary growth in the monocotyledons.

5.
Environ Pollut ; 134(2): 195-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15589646

RESUMO

The secondary cell wall structure of tracheids of Scots pine (Pinus sylvestris L.), especially the angle of microfibrils in the S(2) layer, was examined in wood deposited prior to and after the Chernobyl accident in 1986. Microscopic analysis was carried out on wood samples collected in October 1997 from breast height of three pine trees 16, 30 and 42 years old. The polluted site was located in a distance of 5 km south from the Chernobyl nuclear power plant where radioactive contamination in 1997 was 3.7 x 10(5) kBq m(-2). Anatomical analysis showed that the structure of the secondary cell wall in tracheids formed after the Chernobyl accident was changed. Changes occurred both in S(2) and S(3) layers. The angle of microfibrils in S(2) layer in wood deposited after the Chernobyl accident was different in comparison to this measured in wood formed prior to the disaster. The intensity of the changes, i.e. alteration of the microfibrils angle in S(2) layer and unusual pattern of the S(3) layer, depended on the age of the tree and was most intensive in a young tree.


Assuntos
Acidente Nuclear de Chernobyl , Pinus sylvestris/efeitos da radiação , Parede Celular/efeitos da radiação , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/métodos , Microfibrilas/efeitos da radiação , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...