Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 23(5): e14141, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38465473

RESUMO

The genetic pathways that modulate ageing in multicellular organisms are typically highly conserved across wide evolutionary distances. Recently RNA polymerase III (Pol III) was shown to promote ageing in yeast, C. elegans and D. melanogaster. In this study we investigated the role of Pol III in mammalian ageing using C57BL/6N mice heterozygous for Pol III (Polr3b+/-). We identified sexually dimorphic, organ-specific beneficial as well as detrimental effects of the Polr3b+/- mutation on health. Female Polr3b+/- mice displayed improved bone health during ageing, but their ability to maintain an effective gut barrier function was compromised and they were susceptible to idiopathic dermatitis (ID). In contrast, male Polr3b+/- mice were lighter than wild-type (WT) males and had a significantly improved gut barrier function in old age. Several metabolic parameters were affected by both age and sex, but no genotype differences were detected. Neither male nor female Polr3b+/- mice were long-lived compared to WT controls. Overall, we find no evidence that a reduced Pol III activity extends mouse lifespan but we do find some potential organ- and sex-specific benefits for old-age health.


Assuntos
Envelhecimento , Heterozigoto , Longevidade , Camundongos Endogâmicos C57BL , RNA Polimerase III , Animais , Camundongos , Longevidade/genética , Envelhecimento/genética , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Feminino , Masculino
2.
J Mater Chem B ; 11(17): 3958-3968, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37070387

RESUMO

Antimicrobial resistance is one of the greatest threats to human health. Gram-positive methicillin resistant Staphylococcus aureus (MRSA), in both its planktonic and biofilm form, is of particular concern. Herein we identify the hydrogelation properties for a series of intrinsically fluorescent, structurally related supramolecular self-associating amphiphiles and determine their efficacy against both planktonic and biofilm forms of MRSA. To further explore the potential translation of this hydrogel technology for real-world applications, the toxicity of the amphiphiles was determined against the eukaryotic multicellular model organism, Caenorhabditis elegans. Due to the intrinsic fluorescent nature of these supramolecular amphiphiles, material characterisation of their molecular self-associating properties included; comparative optical density plate reader assays, rheometry and widefield fluorescence microscopy. This enabled determination of amphiphile structure and hydrogel sol dependence on resultant fibre formation.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Animais , Humanos , Testes de Sensibilidade Microbiana , Biofilmes , Caenorhabditis elegans , Plâncton , Benzotiazóis
4.
Genome Res ; 32(2): 258-265, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35078808

RESUMO

Reduced provision of protein translation machinery promotes healthy aging in a number of animal models. In humans, however, inborn impairments in translation machinery are a known cause of several developmental disorders, collectively termed ribosomopathies. Here, we use casual inference approaches in genetic epidemiology to investigate whether adult, tissue-specific biogenesis of translation machinery drives human aging. We assess naturally occurring variation in the expression of genes encoding subunits specific to the two RNA polymerases (Pols) that transcribe ribosomal and transfer RNAs, namely Pol I and III, and the variation in expression of ribosomal protein (RP) genes, using Mendelian randomization. We find each causally associated with human longevity (ß = -0.15 ± 0.047, P = 9.6 × 10-4, q = 0.015; ß = -0.13 ± 0.040, P = 1.4 × 10-3, q = 0.023; ß = -0.048 ± 0.016, P = 3.5 × 10-3, q = 0.056, respectively), and this does not appear to be mediated by altered susceptibility to a single disease. We find that reduced expression of Pol III, RPs, or Pol I promotes longevity from different organs, namely visceral adipose, liver, and skeletal muscle, echoing the tissue specificity of ribosomopathies. Our study shows the utility of leveraging genetic variation in expression to elucidate how essential cellular processes impact human aging. The findings extend the evolutionary conservation of protein synthesis as a critical process that drives animal aging to include humans.


Assuntos
Envelhecimento , Biossíntese de Proteínas , RNA Polimerase I , Envelhecimento/genética , Animais , RNA Polimerases Dirigidas por DNA , Humanos , Análise da Randomização Mendeliana , RNA Polimerase I/metabolismo , Proteínas Ribossômicas/genética , Ribossomos/genética , Ribossomos/metabolismo
5.
Front Genet ; 12: 758135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539762

RESUMO

[This corrects the article DOI: 10.3389/fgene.2021.705122.].

6.
Front Genet ; 12: 705122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295356

RESUMO

Transcription in eukaryotic cells is performed by three RNA polymerases. RNA polymerase I synthesises most rRNAs, whilst RNA polymerase II transcribes all mRNAs and many non-coding RNAs. The largest of the three polymerases is RNA polymerase III (Pol III) which transcribes a variety of short non-coding RNAs including tRNAs and the 5S rRNA, in addition to other small RNAs such as snRNAs, snoRNAs, SINEs, 7SL RNA, Y RNA, and U6 spilceosomal RNA. Pol III-mediated transcription is highly dynamic and regulated in response to changes in cell growth, cell proliferation and stress. Pol III-generated transcripts are involved in a wide variety of cellular processes, including translation, genome and transcriptome regulation and RNA processing, with Pol III dys-regulation implicated in diseases including leukodystrophy, Alzheimer's, Fragile X-syndrome and various cancers. More recently, Pol III was identified as an evolutionarily conserved determinant of organismal lifespan acting downstream of mTORC1. Pol III inhibition extends lifespan in yeast, worms and flies, and in worms and flies acts from the intestine and intestinal stem cells respectively to achieve this. Intriguingly, Pol III activation achieved through impairment of its master repressor, Maf1, has also been shown to promote longevity in model organisms, including mice. In this review we introduce the Pol III transcription apparatus and review the current understanding of RNA Pol III's role in ageing and lifespan in different model organisms. We then discuss the potential of Pol III as a therapeutic target to improve age-related health in humans.

7.
PLoS Genet ; 17(3): e1009358, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33661901

RESUMO

The feeling of hunger or satiety results from integration of the sensory nervous system with other physiological and metabolic cues. This regulates food intake, maintains homeostasis and prevents disease. In C. elegans, chemosensory neurons sense food and relay information to the rest of the animal via hormones to control food-related behaviour and physiology. Here we identify a new component of this system, SKN-1B which acts as a central food-responsive node, ultimately controlling satiety and metabolic homeostasis. SKN-1B, an ortholog of mammalian NF-E2 related transcription factors (Nrfs), has previously been implicated with metabolism, respiration and the increased lifespan incurred by dietary restriction. Here we show that SKN-1B acts in two hypothalamus-like ASI neurons to sense food, communicate nutritional status to the organism, and control satiety and exploratory behaviours. This is achieved by SKN-1B modulating endocrine signalling pathways (IIS and TGF-ß), and by promoting a robust mitochondrial network. Our data suggest a food-sensing and satiety role for mammalian Nrf proteins.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Comportamento Animal , Caenorhabditis elegans/genética , Modelos Biológicos , Músculos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
8.
Aging Cell ; 18(5): e12998, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31309734

RESUMO

Caenorhabditis elegans is an excellent model for high-throughput experimental approaches but lacks an automated means to pinpoint time of death during survival assays over a short time frame, that is, easy to implement, highly scalable, robust, and versatile. Here, we describe an automated, label-free, high-throughput method using death-associated fluorescence to monitor nematode population survival (dubbed LFASS for label-free automated survival scoring), which we apply to severe stress and infection resistance assays. We demonstrate its use to define correlations between age, longevity, and severe stress resistance, and its applicability to parasitic nematodes. The use of LFASS to assess the effects of aging on susceptibility to severe stress revealed an unexpected increase in stress resistance with advancing age, which was largely autophagy-dependent. Correlation analysis further revealed that while severe thermal stress resistance positively correlates with lifespan, severe oxidative stress resistance does not. This supports the view that temperature-sensitive protein-handling processes more than redox homeostasis underpin aging in C. elegans. That the ages of peak resistance to infection, severe oxidative stress, heat shock, and milder stressors differ markedly suggests that stress resistance and health span do not show a simple correspondence in C. elegans.


Assuntos
Envelhecimento/fisiologia , Automação , Caenorhabditis elegans/fisiologia , Estresse Fisiológico , Animais , Homeostase , Oxirredução , Estresse Oxidativo , Análise de Sobrevida , Temperatura
9.
Cell Chem Biol ; 25(8): 941-951.e6, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-29779954

RESUMO

Vitamin B12 is made by only certain prokaryotes yet is required by a number of eukaryotes such as mammals, fish, birds, worms, and Protista, including algae. There is still much to learn about how this nutrient is trafficked across the domains of life. Herein, we describe ways to make a number of different corrin analogs with fluorescent groups attached to the main tetrapyrrole-derived ring. A further range of analogs were also constructed by attaching similar fluorescent groups to the ribose ring of cobalamin, thereby generating a range of complete and incomplete corrinoids to follow uptake in bacteria, worms, and plants. By using these fluorescent derivatives we were able to demonstrate that Mycobacterium tuberculosis is able to acquire both cobyric acid and cobalamin analogs, that Caenorhabditis elegans takes up only the complete corrinoid, and that seedlings of higher plants such as Lepidium sativum are also able to transport B12.


Assuntos
Bactérias/metabolismo , Caenorhabditis elegans/metabolismo , Corantes Fluorescentes/metabolismo , Lepidium sativum/metabolismo , Vitamina B 12/metabolismo , Animais , Infecções Bacterianas/microbiologia , Transporte Biológico , Corrinoides/análise , Corrinoides/metabolismo , Corantes Fluorescentes/análise , Humanos , Microscopia de Fluorescência , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , Vitamina B 12/análogos & derivados , Vitamina B 12/análise
10.
Nature ; 552(7684): 263-267, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29186112

RESUMO

Three distinct RNA polymerases transcribe different classes of genes in the eukaryotic nucleus. RNA polymerase (Pol) III is the essential, evolutionarily conserved enzyme that generates short, non-coding RNAs, including tRNAs and 5S rRNA. The historical focus on transcription of protein-coding genes has left the roles of Pol III in organismal physiology relatively unexplored. Target of rapamycin kinase complex 1 (TORC1) regulates Pol III activity, and is also an important determinant of longevity. This raises the possibility that Pol III is involved in ageing. Here we show that Pol III limits lifespan downstream of TORC1. We find that a reduction in Pol III extends chronological lifespan in yeast and organismal lifespan in worms and flies. Inhibiting the activity of Pol III in the gut of adult worms or flies is sufficient to extend lifespan; in flies, longevity can be achieved by Pol III inhibition specifically in intestinal stem cells. The longevity phenotype is associated with amelioration of age-related gut pathology and functional decline, dampened protein synthesis and increased tolerance of proteostatic stress. Pol III acts on lifespan downstream of TORC1, and limiting Pol III activity in the adult gut achieves the full longevity benefit of systemic TORC1 inhibition. Hence, Pol III is a pivotal mediator of this key nutrient-signalling network for longevity; the growth-promoting anabolic activity of Pol III mediates the acceleration of ageing by TORC1. The evolutionary conservation of Pol III affirms its potential as a therapeutic target.


Assuntos
Longevidade/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , RNA Polimerase III/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/fisiologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/enzimologia , Drosophila melanogaster/fisiologia , Evolução Molecular , Feminino , Alimentos , Intestinos/citologia , Intestinos/enzimologia , Longevidade/efeitos dos fármacos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Biossíntese de Proteínas , RNA Polimerase III/antagonistas & inibidores , RNA Polimerase III/deficiência , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/fisiologia , Células-Tronco/citologia , Células-Tronco/enzimologia
11.
Aging Cell ; 16(5): 1191-1194, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28612944

RESUMO

In C. elegans, the skn-1 gene encodes a transcription factor that resembles mammalian Nrf2 and activates a detoxification response. skn-1 promotes resistance to oxidative stress (Oxr) and also increases lifespan, and it has been suggested that the former causes the latter, consistent with the theory that oxidative damage causes aging. Here, we report that effects of SKN-1 on Oxr and longevity can be dissociated. We also establish that skn-1 expression can be activated by the DAF-16/FoxO transcription factor, another central regulator of growth, metabolism, and aging. Notably, skn-1 is required for Oxr but not increased lifespan resulting from over-expression of DAF-16; concomitantly, DAF-16 over-expression rescues the short lifespan of skn-1 mutants but not their hypersensitivity to oxidative stress. These results suggest that SKN-1 promotes longevity by a mechanism other than protection against oxidative damage.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Longevidade/genética , Fatores de Transcrição/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Estresse Oxidativo , Interferência de RNA , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
12.
IEEE/ACM Trans Comput Biol Bioinform ; 13(6): 1045-1058, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26661786

RESUMO

This study comprehensively evaluates the performance of five types of probabilistic hierarchical classification methods used for predicting Gene Ontology (GO) terms related to ageing. Of those tested, a new hybrid of a Local Hierarchical Classifier (LHC) and the Predictive Clustering Tree algorithm (LHC-PCT) had the best predictive accuracy results. We also tested the impact of two types of variations in most hierarchical classification algorithms, namely: (a) changing the base algorithm (we tested Naive Bayes and Support Vector Machines), and the impact of (b) using or not the Correlation based Feature Selection (CFS) algorithm in a pre-processing step. In total, we evaluated the predictive performance of 17 variations of hierarchical classifiers across 15 datasets of ageing and longevity-related genes. We conclude that the LHC-PCT algorithm ranks better across several tests (seven out of 12). In addition, we interpreted the models generated by the PCT algorithm to show how hierarchical classification algorithms can be used to extract biological insights out of the ageing-related datasets that we compiled.


Assuntos
Envelhecimento/genética , Perfilação da Expressão Gênica/métodos , Modelos Genéticos , Modelos Estatísticos , Reconhecimento Automatizado de Padrão/métodos , Proteoma/genética , Algoritmos , Simulação por Computador , Mineração de Dados/métodos , Bases de Dados Genéticas , Humanos , Aprendizado de Máquina
13.
Biogerontology ; 16(2): 221-34, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25156270

RESUMO

In C. elegans, mutations in the conserved insulin/IGF-1 signaling (IIS) pathway lead to a robust extension in lifespan, improved late life health, and protection from age-related disease. These effects are mediated by the FoxO transcription factor DAF-16 which lies downstream of the IIS kinase cascade. Identifying and functionally testing DAF-16 target genes has been a focal point of ageing research for the last 10 years. Here, I review the recent advances in identifying and understanding IIS/DAF-16 targets. These studies continue to reveal the intricate nature of the IIS/DAF-16 gene regulation network and are helping us to understand the mechanisms that control lifespan. Ageing and age related disease is an area of intense public interest, and the biochemical characterization of the genes involved will be critical for identifying drugs to improve the health of our ageing population.


Assuntos
Envelhecimento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Animais
14.
Aging (Albany NY) ; 6(2): 98-117, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531613

RESUMO

In C. elegans, increased lifespan in daf-2 insulin/IGF-1 receptor mutants is accompanied by up-regulation of the MDL-1 Mad basic helix-loop-helix leucine zipper transcription factor. Here we describe the role of mdl-1 in C. elegans germline proliferation and aging. The deletion allele mdl-1(tm311) shortened lifespan, and did so significantly more so in long-lived daf-2 mutants implying that mdl-1(+) contributes to effects of daf-2 on lifespan. mdl-1 mutant hermaphrodites also lay increased numbers of unfertilized oocytes. During aging, unfertilized oocytes in the uterus develop into tumors, whose development was accelerated by mdl-1(tm311). Opposite phenotypes were seen in daf-2 mutants, i.e. mdl-1 and daf-2 mutant germlines are hyperplastic and hypoplastic, respectively. Thus, MDL-1, like its mammalian orthologs, is an inhibitor of cell proliferation and growth that slows progression of an age-related pathology in C. elegans (uterine tumors). In addition, intestine-limited rescue of mdl-1 increased lifespan but not to wild type levels. Thus, mdl-1 likely acts both in the intestine and the germline to influence age-related mortality.


Assuntos
Envelhecimento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Feminino , Fatores de Transcrição Forkhead , Genes myc , Hiperplasia , Hipertrofia , Mucosa Intestinal/metabolismo , Oócitos/crescimento & desenvolvimento , Neoplasias Uterinas/genética
15.
PLoS Genet ; 10(2): e1004109, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516399

RESUMO

The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has α, ß and γ subunits. C. elegans has 5 genes encoding putative AMP-binding regulatory γ subunits, aakg-1-5. aakg-4 and aakg-5 are closely related, atypical isoforms, with orthologs throughout the Chromadorea class of nematodes. We report that ∼75% of total γ subunit mRNA encodes these 2 divergent isoforms, which lack consensus AMP-binding residues, suggesting AMP-independent kinase activity. DAF-16 directly activates expression of aakg-4, reduction of which suppresses longevity in daf-2 insulin/IGF-1 receptor mutants. This implies that an increase in the activity of AMPK containing the AAKG-4 γ subunit caused by direct activation by DAF-16 slows aging in daf-2 mutants. Knock down of aakg-4 expression caused a transient decrease in activation of expression in multiple DAF-16 target genes. This, taken together with previous evidence that AMPK promotes DAF-16 activity, implies the action of these two metabolic regulators in a positive feedback loop that accelerates the induction of DAF-16 target gene expression. The AMPK ß subunit, aakb-1, also proved to be up-regulated by DAF-16, but had no effect on lifespan. These findings reveal key features of the architecture of the gene-regulatory network centered on DAF-16, and raise the possibility that activation of AMP-independent AMPK in nutritionally replete daf-2 mutant adults slows aging in C. elegans. Evidence of activation of AMPK subunits in mammals suggests that such FoxO-AMPK interactions may be evolutionarily conserved.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/genética , Proteínas de Caenorhabditis elegans/genética , Fator de Crescimento Insulin-Like I/genética , Insulina/metabolismo , Fatores de Transcrição/genética , Proteínas Quinases Ativadas por AMP/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Longevidade/genética , Isoformas de Proteínas/genética , Receptor de Insulina/genética , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
16.
Mol Syst Biol ; 6: 399, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20706209

RESUMO

Insulin/IGF-1 signaling controls metabolism, stress resistance and aging in Caenorhabditis elegans by regulating the activity of the DAF-16/FoxO transcription factor (TF). However, the function of DAF-16 and the topology of the transcriptional network that it crowns remain unclear. Using chromatin profiling by DNA adenine methyltransferase identification (DamID), we identified 907 genes that are bound by DAF-16. These were enriched for genes showing DAF-16-dependent upregulation in long-lived daf-2 insulin/IGF-1 receptor mutants (P=1.4e(-11)). Cross-referencing DAF-16 targets with these upregulated genes (daf-2 versus daf-16; daf-2) identified 65 genes that were DAF-16 regulatory targets. These 65 were enriched for signaling genes, including known determinants of longevity, but not for genes specifying somatic maintenance functions (e.g. detoxification, repair). This suggests that DAF-16 acts within a relatively small transcriptional subnetwork activating (but not suppressing) other regulators of stress resistance and aging, rather than directly regulating terminal effectors of longevity. For most genes bound by DAF-16::DAM, transcriptional regulation by DAF-16 was not detected, perhaps reflecting transcriptionally non-functional TF 'parking sites'. This study demonstrates the efficacy of DamID for chromatin profiling in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica/métodos , Longevidade/fisiologia , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Cromatina/metabolismo , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Longevidade/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
PLoS Genet ; 6(8)2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20700440

RESUMO

Caenorhabditis elegans SKN-1 (ortholog of mammalian Nrf1/2/3) is critical for oxidative stress resistance and promotes longevity under reduced insulin/IGF-1-like signaling (IIS), dietary restriction (DR), and normal conditions. SKN-1 inducibly activates genes involved in detoxification, protein homeostasis, and other functions in response to stress. Here we used genome-scale RNA interference (RNAi) screening to identify mechanisms that prevent inappropriate SKN-1 target gene expression under non-stressed conditions. We identified 41 genes for which knockdown leads to activation of a SKN-1 target gene (gcs-1) through skn-1-dependent or other mechanisms. These genes correspond to multiple cellular processes, including mRNA translation. Inhibition of translation is known to increase longevity and stress resistance and may be important for DR-induced lifespan extension. One model postulates that these effects derive from reduced energy needs, but various observations suggest that specific longevity pathways are involved. Here we show that translation initiation factor RNAi robustly induces SKN-1 target gene transcription and confers skn-1-dependent oxidative stress resistance. The accompanying increases in longevity are mediated largely through the activities of SKN-1 and the transcription factor DAF-16 (FOXO), which is required for longevity that derives from reduced IIS. Our results indicate that the SKN-1 detoxification gene network monitors various metabolic and regulatory processes. Interference with one of these processes, translation initiation, leads to a transcriptional response whereby SKN-1 promotes stress resistance and functions together with DAF-16 to extend lifespan. This stress response may be beneficial for coping with situations that are associated with reduced protein synthesis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Ligação a DNA/metabolismo , Longevidade , Biossíntese de Proteínas , Interferência de RNA , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Estresse Fisiológico , Fatores de Transcrição/genética
18.
Science ; 326(5949): 140-4, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19797661

RESUMO

Caloric restriction (CR) protects against aging and disease, but the mechanisms by which this affects mammalian life span are unclear. We show in mice that deletion of ribosomal S6 protein kinase 1 (S6K1), a component of the nutrient-responsive mTOR (mammalian target of rapamycin) signaling pathway, led to increased life span and resistance to age-related pathologies, such as bone, immune, and motor dysfunction and loss of insulin sensitivity. Deletion of S6K1 induced gene expression patterns similar to those seen in CR or with pharmacological activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), a conserved regulator of the metabolic response to CR. Our results demonstrate that S6K1 influences healthy mammalian life-span and suggest that therapeutic manipulation of S6K1 and AMPK might mimic CR and could provide broad protection against diseases of aging.


Assuntos
Envelhecimento/fisiologia , Longevidade/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Densidade Óssea , Restrição Calórica , Feminino , Deleção de Genes , Expressão Gênica , Regulação da Expressão Gênica , Insulina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Músculo Esquelético/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Subpopulações de Linfócitos T/imunologia , Serina-Treonina Quinases TOR , Transcrição Gênica
19.
Cell ; 132(6): 1025-38, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18358814

RESUMO

Insulin/IGF-1-like signaling (IIS) is central to growth and metabolism and has a conserved role in aging. In C. elegans, reductions in IIS increase stress resistance and longevity, effects that require the IIS-inhibited FOXO protein DAF-16. The C. elegans transcription factor SKN-1 also defends against oxidative stress by mobilizing the conserved phase 2 detoxification response. Here we show that IIS not only opposes DAF-16 but also directly inhibits SKN-1 in parallel. The IIS kinases AKT-1, -2, and SGK-1 phosphorylate SKN-1, and reduced IIS leads to constitutive SKN-1 nuclear accumulation in the intestine and SKN-1 target gene activation. SKN-1 contributes to the increased stress tolerance and longevity resulting from reduced IIS and delays aging when expressed transgenically. Furthermore, SKN-1 that is constitutively active increases life span independently of DAF-16. Our findings indicate that the transcription network regulated by SKN-1 promotes longevity and is an important direct target of IIS.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Ligação a DNA/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Redes Reguladoras de Genes , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Intestinos , Longevidade , Estresse Oxidativo , Fosforilação , Receptor de Insulina/metabolismo
20.
Endocrinology ; 146(9): 4127-37, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15919748

RESUMO

The nuclear receptor corepressor RIP140 is essential in the ovary for ovulation, but is not required for follicle growth and luteinization. To identify genes that may be subject to regulation by RIP140 or play a role in ovulation, we compared ovarian gene expression profiles in untreated immature wild-type and RIP140 null mice and after treatment with pregnant mare serum gonadotropin and human chorionic gonadotropin. Many genes involved in signaling, extracellular matrix formation, cell-cell attachment, and adhesion were aberrantly regulated in the absence of RIP140, varying according to the hormone status of the mice. Notable among these was the reduced expression of a number of genes that encode components of signaling pathways and matrix proteins required for cumulus expansion, a key remodeling process necessary for ovulation. Histological analysis confirmed that cumulus expansion in RIP140 null mice is reduced, oocyte detachment from the mural cell wall is impaired, and follicles fail to rupture in response to LH. Although the expression of many genes involved in cumulus cell expansion was reduced, there was a subset of genes involved in extracellular matrix formation and cell-cell interactions that was up-regulated and may interfere with ovarian tissue remodeling. We propose that widespread gene dysregulation in ovarian tissues in the absence of RIP140 leads to the anovulatory phenotype. This helps to define an important role for RIP140 in the regulation of multiple processes leading to ovulation.


Assuntos
Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Folículo Ovariano/fisiologia , Ovulação/fisiologia , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteína 1 de Interação com Receptor Nuclear , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...