Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 9: 330, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29545793

RESUMO

Toll-like receptors (TLRs) play a key role in the activation of innate immune cells, in which their engagement leads to production of cytokines and co-stimulatory molecules. TLRs signaling requires recruitment of toll/IL-1R (TIR) domain-containing adaptors, such as MyD88 and/or TRIF, and leads to activation of several transcription factors, such as NF-κB, the AP1 complex, and various members of the interferon regulatory factor (IRF) family, which in turn results in triggering of several cellular functions associated with these receptors. A role for Src family kinases (SFKs) in this signaling pathway has also been established. Our work and that of others have shown that this type of kinases is activated following engagement of several TLRs, and that this event is essential for the initiation of specific downstream cellular response. In particular, we have previously demonstrated that activation of SFKs is required for balanced production of pro-inflammatory cytokines by monocyte-derived dendritic cells after stimulation with R848, an agonist of human TLRs 7/8. We also showed that TLR7/8 triggering leads to an increase in interferon regulatory factor 1 (IRF-1) protein levels and that this effect is abolished by inhibition of SFKs, suggesting a critical role of these kinases in IRF-1 regulation. In this study, we first confirmed the key role of SFKs in TLR7/8 signaling for cytokine production and accumulation of IRF-1 protein in monocytes and in B lymphocytes, two other type of antigen-presenting cells. Then, we demonstrate that TLR7 triggering leads to an increase of K63-linked ubiquitination of IRF-1, which is prevented by SFKs inhibition, suggesting a key role of these kinases in posttranslational regulation of IRF-1 in the immune cells. In order to understand the mechanism that links SFKs activation to IRF-1 K63-linked ubiquitination, we examined SFKs and IRF-1 possible interactors and proved that activation of SFKs is necessary for their interaction with TNFR-associated factor 6 (TRAF6) and promotes the recruitment of both cIAP2 and IRF-1 by TRAF6. Collectively, our data demonstrate that TLR7/8 engagement leads to the formation of a complex that allows the interaction of cIAP2 and IRF-1 resulting in IRF-1 K63-linked ubiquitination, and that active SFKs are required for this process.


Assuntos
Adjuvantes Imunológicos/farmacologia , Linfócitos B/imunologia , Fator Regulador 1 de Interferon/imunologia , Monócitos/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Ubiquitinação/efeitos dos fármacos , Quinases da Família src/imunologia , Linfócitos B/citologia , Células HEK293 , Humanos , Fator Regulador 1 de Interferon/genética , Monócitos/citologia , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genética , Ubiquitinação/genética , Ubiquitinação/imunologia , Quinases da Família src/genética
2.
Infect Immun ; 81(8): 2851-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23716610

RESUMO

Clostridium difficile is a spore-forming bacterium that can reside in animals and humans. C. difficile infection causes a variety of clinical symptoms, ranging from diarrhea to fulminant colitis. Disease is mediated by TcdA and TcdB, two large enterotoxins released by C. difficile during colonization of the gut. In this study, we evaluated the ability of recombinant toxin fragments to induce neutralizing antibodies in mice. The protective efficacies of the most promising candidates were then evaluated in a hamster model of disease. While limited protection was observed with some combinations, coadministration of a cell binding domain fragment of TcdA (TcdA-B1) and the glucosyltransferase moiety of TcdB (TcdB-GT) induced systemic IgGs which neutralized both toxins and protected vaccinated animals from death following challenge with two strains of C. difficile. Further characterization revealed that despite high concentrations of toxin in the gut lumens of vaccinated animals during the acute phase of the disease, pathological damage was minimized. Assessment of gut contents revealed the presence of TcdA and TcdB antibodies, suggesting that systemic vaccination with this pair of recombinant polypeptides can limit the disease caused by toxin production during C. difficile infection.


Assuntos
Proteínas de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Infecções por Clostridium/imunologia , Enterotoxinas/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos de Bactérias/imunologia , Clostridioides difficile/imunologia , Infecções por Clostridium/prevenção & controle , Cricetinae , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Camundongos , Proteínas Recombinantes/imunologia
3.
Cell Microbiol ; 15(10): 1674-87, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23517059

RESUMO

Clostridium difficile is the leading cause of antibiotic-associated diarrhoea and pseudomembranous colitis. While the role of toxins in pathogenesis has been extensively described, the contribution of surface determinants to intestinal colonization is still poorly understood. We focused our study on a novel member of the MSCRAMM family, named CbpA (Collagen binding protein A), for its adhesive properties towards collagen. We demonstrate that CbpA, which carries an LPXTG-like cell wall anchoring domain, is expressed on the bacterial surface of C. difficile and that the recombinant protein binds at high affinity to collagens I and V (apparent Kd in the order of 10(-9 ) M). These findings were validated by confocal microscopy studies showing the colocalization of the protein with type I and V collagen fibres produced by human fibroblasts and mouse intestinal tissues. However, the collagen binding activity of the wild-type C. difficile 630 strain was indistinguishable to the cbpA knock-out strain. To overcome this apparent clostridial adherence redundancy, we engineered a Lactococcus lactis strain for the heterologous expression of CbpA. When exposed on the surface of L. lactis, CbpA significantly enhances the ability of the bacterium to interact with collagen and to adhere to ECM-producing cells. The binding activity of L. lactis-CbpA strain was prevented by an antiserum raised against CbpA, demonstrating the specificity of the interaction. These results suggest that CbpA is a newsurface-exposed adhesin contributing to the C. difficile interaction with the host.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Clostridioides difficile/fisiologia , Colágeno/metabolismo , Interações Hospedeiro-Patógeno , Animais , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Cinética , Lactococcus lactis/genética , Lactococcus lactis/fisiologia , Camundongos , Microscopia Confocal , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...