Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 18(8): 4774-4794, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35849729

RESUMO

We report an analytical bond energy from bond orders and populations (BEBOP) model that provides intramolecular bond energy decompositions for chemical insight into the thermochemistry of molecules. The implementation reported here employs a minimum basis set Mulliken population analysis on well-conditioned Hartree-Fock orbitals to decompose total electronic energies into physically interpretable contributions. The model's parametrization scheme is based on atom-specific parameters for hybridization and atom pair-specific parameters for short-range repulsion and extended Hückel-type bond energy term fitted to reproduce CBS-QB3 thermochemistry data. The current implementation is suitable for molecules involving H, Li, Be, B, C, N, O, and F atoms, and it can be used to analyze intramolecular bond energies of molecular structures at optimized stationary points found from other computational methods. This first-generation model brings the computational cost of a Hartree-Fock calculation using a large triple-ζ basis set, and its atomization energies are comparable to those from widely used hybrid Kohn-Sham density functional theory (DFT, as benchmarked to 109 species from the G2/97 test set and an additional 83 reference species). This model should be useful for the community by interpreting overall ab initio molecular energies in terms of physically insightful bond energy contributions, e.g., bond dissociation energies, resonance energies, molecular strain energies, and qualitative energetic contributions to the activation barrier in chemical reaction mechanisms. This work reports a critical benchmarking of this method as well as discussions of its strengths and weaknesses compared to hybrid DFT (i.e., B3LYP, M062X, PBE0, and APF methods), and other cost-effective approximate Hamiltonian semiempirical quantum methods (i.e., AM1, PM6, PM7, and DFTB3).


Assuntos
Termodinâmica , Teoria da Densidade Funcional , Estrutura Molecular
2.
J Colloid Interface Sci ; 393: 151-60, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23153677

RESUMO

A model for the limiting surface tension of surfactant solutions (surface tension at and above the critical micelle concentration, cmc) was developed. This model takes advantage of the equilibrium between the surfactant molecules on the liquid/vacuum surface and in micelles in the bulk at the cmc. An approximate analytical equation for the surface tension at the cmc was obtained. The derived equation contains two parameters, which characterize the intermolecular interactions in the micelles, and the third parameter, which is the surface area per surfactant molecule at the interface. These parameters were calculated using a new atomistic modeling approach. The performed calculations of the limiting surface tension for four simple surfactants show good agreement with experimental data (~30% accuracy). The developed model provides the guidance for design of surfactants with low surface tension values.


Assuntos
Tensoativos/química , Micelas , Modelos Moleculares , Soluções , Tensão Superficial
3.
J Mol Model ; 18(1): 239-50, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21523541

RESUMO

Molecular dynamics (MD) simulations of poly(dimethylsiloxane) (PDMS) and poly(tetrafluoroethylene) (PTFE) were carried out to determine their surface properties and energies. This study helps to gain better insight into the molecular modeling of PDMS and PTFE, in particular how different approaches affect calculations of surface energy. Current experimental and theoretical data were used to further understand the surface properties of PDMS and PTFE as well as to validate and verify results obtained from the combination of density functional theory (DFT) calculations (including periodic boundary conditions) and MD simulations. Detailed analysis of the structure and electronic properties (by calculation of the projected density of states) of the bulk and surface models of PDMS and PTFE was performed. The sensitivity of the surface energy calculation of these two polymers to the chemistry and model preparation was indicated. The balance between the molecular density, weight (which also reflects bond orientation in the surface region), bond flexibility, and intramolecular interactions including bond stretching was revealed to govern the results obtained. In modeling, the structural organization of polymer near a given surface (types and number of end groups and broken bonds due to application of different cut offs of the periodic structure) also significantly affects the final results. Besides the structural differences, certain simulation parameters, such the DFT functionals and simulation boxes utilized, play an important role in determining surface energy. The models used here were shown to be sufficient due to their good agreement with experimental and other theoretical data related to surface properties and surface energies.


Assuntos
Dimetilpolisiloxanos/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Politetrafluoretileno/química , Alumínio/química , Simulação por Computador , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...