Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; 40(1): e3400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37964726

RESUMO

In the production of biological therapeutics such as monoclonal antibodies (mAbs), ultrafiltration and diafiltration (UF/DF) are widely regarded as effective downstream processing steps capable of removing process equipment related leachables (PERLs) introduced upstream of the UF/DF step. However, clearance data available in the literature are limited to species with low partition coefficients (log P) such as buffer ions, hydrophilic organic compounds, and some metal ions. Additional data for a wide range of PERLs including hydrophobic compounds and elemental impurities are needed to establish meaningful, comprehensive safety risk assessments. Herein, we report the results from studies investigating the clearance of seven different organic PERLs representing a wide range of characteristics (i.e., log P (-0.3 to 18)), and four model elements with different chemical properties spiked into a mAb formulation at 10 ppm and analyzed during clearance using gas chromatography-mass spectrometry (GC-MS), liquid chromatography-photodiode-array-mass spectrometry (LC-PDA-MS), and inductively coupled plasma mass spectrometry (ICP-MS). The clearance data showed ideal clearance and sieving of spiked organic PERLs with log P < 4, partial clearance of PERLs with 4 < log P < 9, and poor clearance of highly hydrophobic PERLs (log P > 9) after nine diafiltration volumes (DVs). Supplemental clearance studies on seven additional PERLs present at much lower concentration levels (0.1-1.5 ppm) in the mAb formulation upstream of UF/DF and three PERLs associated with the tangential flow filtration (TFF) equipment also demonstrated the similar correlations between log P and % clearance. For model elements, the findings suggest that UF/DF in general provides ideal clearance for elements. Evidence showed that the UF/DF process does not only help mitigate leachables risk from PERLs introduced upstream of UF/DF, but also from the TFF operation itself as all three TFF-related PERLs were effectively cleared. Overall, the UF/DF clearance presented in this work demonstrated whereas highly hydrophobic PERLs and elements that exist as charged species, particularly transition metal ions, may not be as effectively cleared and thus warrant further risk assessment; hydrophilic and some hydrophobic PERLs (log P < 4) are indeed well-cleared and thus present a lower overall safety risk.


Assuntos
Filtração , Ultrafiltração , Ultrafiltração/métodos , Filtração/métodos , Compostos Orgânicos , Íons
2.
Org Lett ; 7(18): 4045-8, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16119963

RESUMO

An axially chiral 1,8-dipyridylnaphthalene N,N'-dioxide has been employed in enantioselective fluorescence analysis of the enzymatic kinetic resolution of trans-1,2-diaminocyclohexane. The procedure eliminates cumbersome purification and derivatization steps required by traditional methods. The results demonstrate the potential of fluorescence spectroscopy using suitable chiral chemosensors for real-time analysis of the enantiomeric composition of chiral compounds and for high-throughput screening of asymmetric reactions. [structure: see text]

3.
J Org Chem ; 70(8): 2930-8, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15822951

RESUMO

Axially chiral 1,8-bis(2,2'-diphenyl-4,4'-diquinolyl)naphthalene, 8, and 1,8-bis(2,2'-diisopropyl-4,4'diquinolyl)naphthalene N,N'-dioxide, 9, have been prepared to study the stereodynamics of these and other 1,8-diheteroarylnaphthalenes based on reversible first-order isomerization kinetics and crystallographic data. The ratio of the two enantiomeric anti-conformers to the meso syn-isomer of 8 and 9 was determined as 1.2:1 and 9.6:1. Investigation of the conformational stability of the atropisomers at enhanced temperatures using HPLC and NMR spectroscopy revealed a Gibbs activation energy of 122.4 (121.8) kJ/mol and 115.2 (109.0) kJ/mol for the anti/syn- (syn/anti)-isomerization of 8 and 9, respectively. Comparison of the conformational stability of a series of 1,8-dipyridylnaphthalenes and 1,8-diquinolylnaphthalenes shows that the latter exhibit a significantly higher rotational energy barrier. While the syn- and anti-isomers of 1,8-dipyridylnaphthalenes interconvert rapidly at room temperature the stereoisomers of 1,8-diquinolylnaphthalenes can be isolated by chromatography or crystallization and stored at 25 degrees C for several months without any sign of racemization. The conformational stability of 1,8-diquinolylnaphthalenes is a consequence of significantly increased steric hindrance to isomerization in a highly congested T-shaped transition state. Conversion of 1,8-diheteroarylnaphthalenes to their corresponding N,N'-dioxides was found to result in an increased anti/syn-ratio and decreased rotational energy barrier, which was attributed to synergistic repulsive dipole/dipole interactions destabilizing the diastereomeric ground states and facilitated out-of-plane bending reducing the steric hindrance in the T-shaped transition state.

4.
Chirality ; 17(4): 171-6, 2005 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-15825197

RESUMO

The kinetics of the racemization of 2-benzoylcyclohexanone 1 in hexanes, ethanol, and mixtures thereof have been investigated by time dependence of enantiomeric purity using enantioselective HPLC. In pure hexanes and ethanol, the racemization half-lives were determined as 552 and 23.8 min, respectively, at 66 degrees C. Surprisingly, racemization of 1 in mixtures of hexanes and ethanol was found to involve an induction period followed by a sigmoidal decrease of the enantiomeric excess with half-lives varying between 11.5 and 24.0 min. This unexpected solvent influence on the rate of racemization of 1 was attributed to complex isomerization mechanisms involving three possibly interconverting enol tautomers of 1.

5.
J Org Chem ; 69(6): 2048-55, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-15058953

RESUMO

The syn and anti isomers of axially chiral 1,8-diquinolylnaphthalenes have been synthesized via Pd-catalyzed Stille coupling of 1,8-dibromonaphthalene and 2-alkyl-4-trimethylstannylquinolines. Optimization of the cross-coupling reaction allowed the preparation of highly constrained 1,8-bis(2,2'-dimethyl-4,4'-diquinolyl)naphthalene, 2, and 1,8-bis(2,2'-diisopropyl-4,4'-diquinolyl)naphthalene, 3, in 42% and 41% yield, respectively. Employing Pd(PPh(3))(4) and CuO as the cocatalysts in the coupling reaction of 1,8-dibromonaphthalene and 2-alkyl-4-trimethylstannylquinolines proved to be superior over other catalysts such as PdCl(2)(dppf), Pd(2)(dba)(3)/P(t-Bu)(3), and POPd. The C(2)-symmetric anti isomers of 2 and 3 were found to be more stable than the corresponding meso syn isomer. The ratio of the two enantiomeric anti conformers to the syn conformer was determined as 7.9:1 for 2 and 8.6:1 for 3 by NMR and HPLC analysis. The atropisomers of 2 and 3 were found to be stable to rotation about the chiral axis at room temperature and all three stereoisomers of 2 were isolated by semipreparative HPLC on a Chiralpak AD column. The diastereoisomers of 3 were separated via preferential crystallization of the anti isomers from diethyl ether. Slow syn/anti interconversion was observed for both atropisomers at enhanced temperature, and the diastereomerization and enantiomerization processes were monitored by NMR and HPLC. The Gibbs activation energy, DeltaG++, for the isomerization of 2 was determined as 116.0 (112.1) kJ/mol for the conversion of the anti (syn) to the syn (anti) isomer at 71.0 degrees C. The rotational energy barrier of 3 was determined as 115.2 (111.1) kJ/mol for the conversion of the anti (syn) to the syn (anti) isomer at 66.2 degrees C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...