Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 42(2): 243-246, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37156916

RESUMO

As structure prediction methods are generating millions of publicly available protein structures, searching these databases is becoming a bottleneck. Foldseek aligns the structure of a query protein against a database by describing tertiary amino acid interactions within proteins as sequences over a structural alphabet. Foldseek decreases computation times by four to five orders of magnitude with 86%, 88% and 133% of the sensitivities of Dali, TM-align and CE, respectively.


Assuntos
Algoritmos , Proteínas , Bases de Dados de Proteínas , Proteínas/química , Aminoácidos , Software
2.
Viruses ; 14(7)2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35891501

RESUMO

Viruses are the cause of a considerable burden to human, animal and plant health, while on the other hand playing an important role in regulating entire ecosystems. The power of new sequencing technologies combined with new tools for processing "Big Data" offers unprecedented opportunities to answer fundamental questions in virology. Virologists have an urgent need for virus-specific bioinformatics tools. These developments have led to the formation of the European Virus Bioinformatics Center, a network of experts in virology and bioinformatics who are joining forces to enable extensive exchange and collaboration between these research areas. The EVBC strives to provide talented researchers with a supportive environment free of gender bias, but the gender gap in science, especially in math-intensive fields such as computer science, persists. To bring more talented women into research and keep them there, we need to highlight role models to spark their interest, and we need to ensure that female scientists are not kept at lower levels but are given the opportunity to lead the field. Here we showcase the work of the EVBC and highlight the achievements of some outstanding women experts in virology and viral bioinformatics.


Assuntos
Biologia Computacional , Pesquisadores , Vírus , Europa (Continente) , Feminino , Humanos , Pesquisadores/estatística & dados numéricos , Vírus/genética
3.
Nat Chem Biol ; 18(7): 713-723, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35484435

RESUMO

Despite advances in resolving the structures of multi-pass membrane proteins, little is known about the native folding pathways of these complex structures. Using single-molecule magnetic tweezers, we here report a folding pathway of purified human glucose transporter 3 (GLUT3) reconstituted within synthetic lipid bilayers. The N-terminal major facilitator superfamily (MFS) fold strictly forms first, serving as a structural template for its C-terminal counterpart. We found polar residues comprising the conduit for glucose molecules present major folding challenges. The endoplasmic reticulum membrane protein complex facilitates insertion of these hydrophilic transmembrane helices, thrusting GLUT3's microstate sampling toward folded structures. Final assembly between the N- and C-terminal MFS folds depends on specific lipids that ease desolvation of the lipid shells surrounding the domain interfaces. Sequence analysis suggests that this asymmetric folding propensity across the N- and C-terminal MFS folds prevails for metazoan sugar porters, revealing evolutionary conflicts between foldability and functionality faced by many multi-pass membrane proteins.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose , Bicamadas Lipídicas , Animais , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Humanos , Bicamadas Lipídicas/química , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína
4.
PeerJ ; 10: e12983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310163

RESUMO

Background: Throughout biology, multiple sequence alignments (MSAs) form the basis of much investigation into biological features and relationships. These alignments are at the heart of many bioinformatics analyses. However, sequences in MSAs are often incomplete or very divergent, which can lead to poor alignment and large gaps. This slows down computation and can impact conclusions without being biologically relevant. Cleaning the alignment by removing common issues such as gaps, divergent sequences, large insertions and deletions and poorly aligned sequence ends can substantially improve analyses. Manual editing of MSAs is very widespread but is time-consuming and difficult to reproduce. Results: We present a comprehensive, user-friendly MSA trimming tool with multiple visualisation options. Our highly customisable command line tool aims to give intervention power to the user by offering various options, and outputs graphical representations of the alignment before and after processing to give the user a clear overview of what has been removed. The main functionalities of the tool include removing regions of low coverage due to insertions, removing gaps, cropping poorly aligned sequence ends and removing sequences that are too divergent or too short. The thresholds for each function can be specified by the user and parameters can be adjusted to each individual MSA. CIAlign is designed with an emphasis on solving specific and common alignment problems and on providing transparency to the user. Conclusion: CIAlign effectively removes problematic regions and sequences from MSAs and provides novel visualisation options. This tool can be used to fine-tune alignments for further analysis and processing. The tool is aimed at anyone who wishes to automatically clean up parts of an MSA and those requiring a new, accessible way of visualising large MSAs.


Assuntos
Biologia Computacional , Alinhamento de Sequência , Sequência de Aminoácidos
5.
Elife ; 112022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35226596

RESUMO

The arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the swine industry worldwide. Here we apply ribosome profiling (RiboSeq) and parallel RNA sequencing (RNASeq) to characterise the transcriptome and translatome of both species of PRRSV and to analyse the host response to infection. We calculated programmed ribosomal frameshift (PRF) efficiency at both sites on the viral genome. This revealed the nsp2 PRF site as the second known example where temporally regulated frameshifting occurs, with increasing -2 PRF efficiency likely facilitated by accumulation of the PRF-stimulatory viral protein, nsp1ß. Surprisingly, we find that PRF efficiency at the canonical ORF1ab frameshift site also increases over time, in contradiction of the common assumption that RNA structure-directed frameshift sites operate at a fixed efficiency. This has potential implications for the numerous other viruses with canonical PRF sites. Furthermore, we discovered several highly translated additional viral ORFs, the translation of which may be facilitated by multiple novel viral transcripts. For example, we found a highly expressed 125-codon ORF overlapping nsp12, which is likely translated from novel subgenomic RNA transcripts that overlap the 3' end of ORF1b. Similar transcripts were discovered for both PRRSV-1 and PRRSV-2, suggesting a potential conserved mechanism for temporally regulating expression of the 3'-proximal region of ORF1b. We also identified a highly translated, short upstream ORF in the 5' UTR, the presence of which is highly conserved amongst PRRSV-2 isolates. These findings reveal hidden complexity in the gene expression programmes of these important nidoviruses.


Viruses have tiny genomes. Rather than carry all the genetic information they need, they rely on the cells they infect. This makes the few genes they do have all the more important. Many viruses store their genes not in DNA, but in a related molecule called RNA. When the virus infects cells, it uses the cells' ribosomes ­ the machines in the cells that make proteins ­ to build its own proteins. One of the central ideas in biology is that one molecule of RNA carries the instructions for just one type of protein. But many viruses break this rule. The ribosomes in cells read RNA instructions in blocks of three: three RNA letters correspond to one protein building block. But certain sequences in the RNA of viruses act as hidden signals that affect how ribosomes read these molecules. These signals make the ribosomes skip backward by one or two letters on the viral RNA, restarting part way through a three-letter block. Scientists call this a 'frameshift', and it is a bit like changing the positions of the spaces in a sentence. The virus causes these frameshifts using proteins or by folding its RNA into a knot-like structure. The frameshifts result in the production of different viral proteins over time. The porcine reproductive and respiratory syndrome virus (PRRSV) uses frameshifts to cause devastating disease in pigs. Besides the sequences in its RNA that allow the ribosomes to skip backwards, the viral enzyme that copies the RNA can also skip forward. This results in shortened copies of its genes, which also changes the proteins they produce. To find out exactly how PRRSV uses these frameshifting techniques, Cook et al. examined infected cells in the laboratory. They monitored the RNA made by the virus and looked closely at the way the cells read it using a technique called ribosome profiling. This revealed that frameshifting increases over the course of an infection. This is partly because the viral protein that causes frameshifts builds up as infection progresses, but it also happened with frameshifts caused by RNA knots. The reason for this is less clear. Cook et al. also discovered several new RNAs made later in infection, which could also change the proteins the virus makes. RNA viruses cause disease in humans as well as pigs. Examples include coronaviruses and HIV. Many of these also have frameshift sites in their genomes. A better understanding of how frameshifts change during infection may aid drug development. Future work could help researchers to understand which proteins viruses make at which stage of infection. This could lead to new treatments for viruses like PRRSV.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Códon/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico/genética , Perfilação da Expressão Gênica , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Ribossomos/genética , Ribossomos/metabolismo , Suínos , Transcriptoma
6.
Arch Virol ; 164(2): 649-652, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30426216

RESUMO

A novel Tymoviridae-like virus, designated Ek Balam virus, was isolated from male Culex quinquefasciatus mosquitoes collected in Yucatan, Mexico. The genome was fully sequenced and shown to have no more than 69% nt sequence identity to its closest known relative. Mosquito cells were permissive to Ek Balam virus replication, but mammalian and avian cells were refractory, suggesting that vertebrates are not involved in the maintenance of the virus in nature.


Assuntos
Culex/virologia , Tymoviridae/isolamento & purificação , Animais , Sequência de Bases , Genoma Viral , Masculino , México , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Tymoviridae/classificação , Tymoviridae/genética
7.
J Gen Virol ; 99(12): 1729-1738, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30412047

RESUMO

A metagenomics approach was used to detect novel and recognized RNA viruses in mosquitoes from the Yucatan Peninsula of Mexico. A total of 1359 mosquitoes of 7 species and 5 genera (Aedes, Anopheles, Culex, Mansonia and Psorophora) were sorted into 37 pools, homogenized and inoculated onto monolayers of Aedes albopictus (C6/36) cells. A second blind passage was performed and then total RNA was extracted and analysed by RNA-seq. Two novel viruses, designated Uxmal virus and Mayapan virus, were identified. Uxmal virus was isolated from three pools of Aedes (Ochlerotatus) taeniorhynchus and phylogenetic data indicate that it should be classified within the recently proposed taxon Negevirus. Mayapan virus was recovered from two pools of Psorophora ferox and is most closely related to unclassified Nodaviridae-like viruses. Two recognized viruses were also detected: Culex flavivirus (family Flaviviridae) and Houston virus (family Mesoniviridae), with one and two isolates being recovered, respectively. The in vitro host ranges of all four viruses were determined by assessing their replicative abilities in cell lines of avian, human, monkey, hamster, murine, lepidopteran and mosquito (Aedes, Anopheles and Culex) origin, revealing that all viruses possess vertebrate replication-incompetent phenotypes. In conclusion, we report the isolation of both novel and recognized RNA viruses from mosquitoes collected in Mexico, and add to the growing plethora of viruses discovered recently through the use of metagenomics.


Assuntos
Biodiversidade , Culicidae/virologia , Especificidade de Hospedeiro , Vírus de RNA/crescimento & desenvolvimento , Vírus de RNA/isolamento & purificação , Animais , Linhagem Celular , Humanos , Metagenômica , México , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , Análise de Sequência de DNA , Análise de Sequência de RNA , Cultura de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...