Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 56(11): 1350-1357, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37255175

RESUMO

ConspectusPlasmonic nanolayers and laminar metallic/dielectric multilayers were originally developed for optical cloaking applications and lensing applications that could potentially image objects whose size was below the diffraction limit. These assemblies were initially formed from gold or silver nanorods grown within an alumina mesh. However, more recently, assemblies with similar properties have also been prepared by sequential thin-layer deposition of alternating layers of gold and magnesium fluoride (MgF2). These metal/dielectric composite materials enable control of the dielectric constant in the directions perpendicular to the layers and balance the real and imaginary dielectric constants of the assembly such that the speed and the amplitude of the waves traveling through the assembly are not attenuated.In this Account, we will also focus on a few of the applications ranging from surface wetting to fluorescence quenching to enhancement of photochemical reactions. First, we will share an introduction to processes used to create these materials, which are combinations of low refractive index metals and transparent higher index materials arranged in a scalable repeating fashion. Two fabrication methods were employed: an electrochemical deposition of Ag nanorods into an anodized alumina matrix which produced materials with an anisotropic negative refractive index material within the plane of the film and lamellar metal/dielectric layers in which the negative index perpendicular to the growth direction. These alternating layers of plasmonic metals and dielectric materials were ultimately chosen to prepare films for further testing, because of their relative ease of fabrication. We will continue with a discussion of a few of the applications of both of these nonlocal dielectric composite materials including more specialized plasmonic, composite, and hyperbolic metamaterials including fluorescence quenching, photochemical reactions, and surface wetting. In each of these applications, the unique response caused by the enhancement of the electric field and the interface between hyperbolic materials and plasmonic materials as they interact photophysically with their near neighbors is presented. In each of the applications, the enhanced electric field extends from the composite substrate layer to interact with its near neighbors and beyond. The presence of this extended interaction can be observed in the form of decreased emission lifetime, enhancement of photochemical reaction rates, and changes in the surface energies measured by contact angle goniometry. In this Account, all of these situations will be addressed. Finally, we will conclude with a summary and vision for the future as well as a discussion of the unique challenges and opportunities available as research active faculty at an HBCU.

2.
Sci Adv ; 7(38): eabg9358, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34524849

RESUMO

High thermal gradients and complex melt pool instabilities involved in powder bed fusion­based metal additive manufacturing using focused Gaussian-shaped beams often lead to high porosity, poor morphological quality, and degraded mechanical performance. We show here that Bessel beams offer unprecedented control over the spatiotemporal evolution of the melt pool in stainless steel (SS 316L) in comparison to Gaussian beams. Notably, the nondiffractive nature of Bessel beams enables greater tolerance for focal plane positioning during 3D printing. We also demonstrate that Bessel beams significantly reduce the propensity for keyhole formation across a broad scan parameter space. High-speed imaging of the melt pool evolution and solidification dynamics reveals a unique mechanism where Bessel beams stabilize the melt pool turbulence and increase the time for melt pool solidification, owing to reduced thermal gradients. Consequently, we observe a distinctively improved combination of high density, reduced surface roughness, and robust tensile properties in 3D-printed test structures.

3.
Nano Lett ; 18(10): 6509-6514, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30180595

RESUMO

The optical reshaping of metallic nanostructures typically requires intense laser pulses to first approach or achieve melting, followed by surface-tension-dominated reshaping, transforming the original nanostructures into more spherical morphologies. Here, we report the directional optical reshaping of the Au nanodisk of an Al-Au heterodimer in the illuminated junction of an atomic force microscope (AFM). Both the heightening and the repositioning of the Au nanodisk component are induced, reducing the gap between the two nanodisks. There are three contributors to this process: the photothermal softening of the Au lattice, the optical force applied to the Au nanodisk by the Al nanodisk, and the optical force from the nearby AFM tip. The asymmetric reshaping of the heterodimer is observable structurally, through electron microscopic imaging, and through changes in the heterodimer optical response. This optical-force-directed shape manipulation may have potential applications in nanofabrication, optically induced nanomanufacturing, sensing, and quality control.

4.
Nano Lett ; 18(3): 2040-2046, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29436231

RESUMO

Many important applications of nanometer-scale metallic complexes arise from the light-induced, near-field interactions between their component structures. Here we examine the near-field interactions in bimetallic Al-Au plasmonic nanodisk heterodimers, where the coupling between the primitive plasmons of nanostructures composed of two different metals is studied. Understanding the correlations between nanoparticle morphology and near-field optical properties, particularly for nanostructures composed of two different metals, requires spectrally resolved near-field spatial information. An ideal tool for such investigations is the recently developed photoinduced force microscopy, where the electromagnetic forces between an optically excited plasmonic nanostructure and an adjacent scanning nanoscale tip are measured. Using this approach, we visualize the wavelength-dependent near-field interactions in these bimetallic heterodimers. This system provides a prime example of the diabatic, antenna-reactor picture of plasmon coupling where for a given wavelength the more resonant primitive "driving" plasmon induces a response, the "forced" plasmon, in the off-resonant component. We critically examine spectrally resolved tip-nanostructure forces, comparing experiment with theory, for tips and nanoscale structures of realistic dimensions relative to frequently used approximations for tip geometries. The contrasting effects of dielectric versus metallic tips on acquired spectral force profiles are also examined.

5.
Nano Lett ; 16(12): 7942-7949, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960494

RESUMO

The ability to image the optical near-fields of nanoscale structures, map their morphology, and concurrently obtain spectroscopic information, all with high spatiotemporal resolution, is a highly sought-after technique in nanophotonics. As a step toward this goal, we demonstrate the mapping of electromagnetic forces between a nanoscale tip and an optically excited sample consisting of plasmonic nanostructures with an imaging platform based on atomic force microscopy. We present the first detailed joint experimental-theoretical study of this type of photoinduced force microscopy. We show that the enhancement of near-field optical forces in gold disk dimers and nanorods follows the expected plasmonic field enhancements with strong polarization sensitivity. We then introduce a new way to evaluate optically induced tip-sample forces by simulating realistic geometries of the tip and sample. We decompose the calculated forces into in-plane and out-of-plane components and compare the calculated and measured force enhancements in the fabricated plasmonic structures. Finally, we show the usefulness of photoinduced force mapping for characterizing the heterogeneity of near-field enhancements in precisely e-beam fabricated nominally alike nanostructures - a capability of widespread interest for precise nanomanufacturing, SERS, and photocatalysis applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...