Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 78: 29-41, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37793602

RESUMO

The present study used Cr(VI)-polluted microcosms amended with lactate or yeast extract, and nonamended microcosms as control, to investigate how a native bacterial community varied in response to the treatment and during the pollutant removal. Results suggested that providing electron donors resulted in a proliferation of a few bacterial species, with the consequent decrease in observed species richness and evenness, and was a driving force for the bacterial compositional shift. Lactate promoted, in the first instance, the enrichment of fermentative bacteria belonging to Chromobacteriaceae, including Paludibacterium, and Micrococcaceae as observed after 4 days. When the rate of Cr(VI) removal was maximum in microcosms amended with lactate, the most represented taxa were Pseudarcicella and Azospirillum. Using yeast extract as a carbon source and electron donor led instead to the significant enrichment of Shewanella, followed by Vogesella and Acinetobacter on the 4th day, corresponding to 90% of Cr(VI) removed from the system. After the complete Cr(VI) removal, achieved in 7 days in the presence of yeast extract, α-diversity was notably increased. The amendment-specific turnover of the enriched bacterial taxa resulted in a different kinetic of pollutant removal. In particular, yeast extract promoted the quickest Cr(VI) reduction, while lactate supported a slower, but also considerable, pollutant removal from water. Since it is reasonable to assume that a macroscopic effect, such as the observed Cr(VI) removal, involved the overrepresented taxa, deepening the knowledge of the native bacterial community and its changes were used to hypothesize the possible microbial pathways involved.


Assuntos
Poluentes Ambientais , Microbiota , Poluentes Químicos da Água , Oxirredução , Cromo , Bactérias/metabolismo , Ácido Láctico , Poluentes Químicos da Água/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-35954976

RESUMO

Remediation interventions based on the native bacteria's capability to reduce Cr(VI) represent a valid strategy in terms of economic and environmental sustainability. In this study, a bioremediation test was carried out using viable microcosms set with groundwater and deep soil (4:1), collected from the saturated zone of an industrial site in Southern Italy that was polluted by ~130 µg L-1 of Cr(VI). Conditions simulating the potential natural attenuation were compared to the enhanced natural attenuation induced by supplying yeast extract or polyhydroxybutyrate. Sterile controls were set up to study the possible Cr(VI) abiotic reduction. No pollution attenuation was detected in the unamended viable reactors, whereas yeast extract provided the complete Cr(VI) removal in 7 days, and polyhydroxybutyrate allowed ~70% pollutant removal after 21 days. The incomplete abiotic removal of Cr(VI) was observed in sterile reactors amended with yeast extract, thus suggesting the essential role of native bacteria in Cr(VI) remediation. This was in accordance with the results of Pearson's coefficient test, which revealed that Cr(VI) removal was positively correlated with microbial proliferation (n = 0.724), and also negatively correlated with pH (n = -0.646), dissolved oxygen (n = -0.828) and nitrate (n = -0.940). The relationships between the Cr(VI) removal and other monitored parameters were investigated by principal component analysis, which explained 76.71% of the total variance.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Cromo/análise , Elétrons , Água Subterrânea/microbiologia , Poluentes Químicos da Água/análise
3.
Plants (Basel) ; 11(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35567183

RESUMO

In agriculture, biochar (B) application has been suggested as a green technology to reduce nitrate pollution from agricultural origins and improve crop yield. The agronomic impact of B use on soil has been extensively studied, while knowledge of its possible effects on horticultural cultivation is still scarce. A greenhouse experiment was conducted to evaluate the effect of using biochar in soils treated with two different rates of nitrogen fertilizers on soil properties and nitrogen (N) leachate. This study also investigated the vegetative parameters during the crop growing season of Brassica oleracea L. var. botrytis. Soil mesocosms were set up to test the following treatments: untreated/control (C); normal dose of N fertilizer (130 kg N ha-1) (ND); ND+B; high dose of N fertilizer (260 kg N ha-1) (HD); and HD+B. Principal component analysis and cluster analysis were exploited to assess biochar's ability to reduce nitrate leaching and enhance soil-vegetative properties. Biochar addition affected the soil chemical properties of the fertilized microcosms (ND and HD). Biochar increased the NH4+ content in HD soil and the NO3- content in ND soil by 26 mg/L and 48.76 mg/L, respectively. The results showed that biochar application increased the marketable cauliflower yield. In ND+B and HD+B, the curd weight was 880.68 kg and 1097.60 kg, respectively. In addition, a small number of nitrogenous compounds in the leachate were quantified in experimental lines with the biochar. Therefore, biochar use improves the marketable yield of horticulture, mitigating the negative impacts associated with the mass use of N fertilizers in agriculture.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34948931

RESUMO

Nitrogen is a vital nutrient helpful to plants and crop growth. However, among the leading causes of water resources pollution is the excess nitrogen from agricultural sources. In European Union countries, the Nitrates Directive has been approved to reduce this problem monitoring of water bodies with regard to nitrate concentrations, designation of Nitrate Vulnerable Zones (NVZs), and establishing codes of good agricultural practices and measures to prevent and reduce water pollution from nitrates. In light of this, we propose an integrated methodological approach to better manage a environmental issue as the perimeter of NVZs with the prospective that our approach could be used in the future by other member states representing a Best Practice in that direction. The methodology is based on data integration applied in a GIS environment. Different available data representing the knowledge of the territory were harmonised, systematised and georeferenced, in order to increase the environmental framework, preserve the contamination of the water resource and give indications on the measures to be implemented to apply in the best way possible the Nitrates Directive. Finally, it was also possible to overcome the infringement procedure in progress for Italy and the Puglia region and proceed to new designation of NVZs.


Assuntos
Nitratos , Poluentes Químicos da Água , Agricultura , Monitoramento Ambiental , União Europeia , Nitratos/análise , Estudos Prospectivos , Poluentes Químicos da Água/análise , Poluição da Água/prevenção & controle , Recursos Hídricos
5.
Artigo em Inglês | MEDLINE | ID: mdl-32731582

RESUMO

Chromium is a potentially toxic metal occurring in water and groundwater as a result of natural and anthropogenic sources. Microbial interaction with mafic and ultramafic rocks together with geogenic processes release Cr (VI) in natural environment by chromite oxidation. Moreover, Cr (VI) pollution is largely related to several Cr (VI) industrial applications in the field of energy production, manufacturing of metals and chemicals, and subsequent waste and wastewater management. Chromium discharge in European Union (EU) waters is subjected to nationwide recommendations, which vary depending on the type of industry and receiving water body. Once in water, chromium mainly occurs in two oxidation states Cr (III) and Cr (VI) and related ion forms depending on pH values, redox potential, and presence of natural reducing agents. Public concerns with chromium are primarily related to hexavalent compounds owing to their toxic effects on humans, animals, plants, and microorganisms. Risks for human health range from skin irritation to DNA damages and cancer development, depending on dose, exposure level, and duration. Remediation strategies commonly used for Cr (VI) removal include physico-chemical and biological methods. This work critically presents their advantages and disadvantages, suggesting a site-specific and accurate evaluation for choosing the best available recovering technology.


Assuntos
Cromo/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Animais , Cromo/toxicidade , Monitoramento Ambiental , Recuperação e Remediação Ambiental , Água Subterrânea , Humanos , Oxirredução , Águas Residuárias , Poluentes Químicos da Água/toxicidade
6.
Artigo em Inglês | MEDLINE | ID: mdl-31973238

RESUMO

A laboratory-scale study was carried out to evaluate the groundwater bioremediation potential of hexavalent chromium (Cr(VI)), taking into account the chromate pollution of an industrial site located in Southern Italy (Apulia Region). The reduction of Cr(VI) was studied on laboratory microcosms, set up in different experimental conditions, namely: ABIO (soil and water sterilized), BIO (soil and water not sterilized), LATT (with the addition of lactate), and YE (with the addition of yeast extract). Control test lines, set up by using sterilized matrices and amendments, were employed to assess the occurrence of the pollutant reduction via chemical processes. By combining molecular (microbial abundance, specific chromate reductase genes (ChR) and the Shewanella oinedensis bacterial strain) with chemical analyses of chromium (VI and III) in the matrices (water and soil) of each microcosm, it was possible to investigate the response of microbial populations to different experimental conditions, and therefore, to assess their bioremediation capability in promoting Cr(VI) reduction. The overall results achieved within this work evidenced the key role of amendments (lactate and yeast extract) in enhancing the biological reduction of hexavalent chromium in the contaminated aqueous phase of laboratory microcosms. The highest value of Cr(VI) removal (99.47%) was obtained in the YE amended microcosms at seven days.


Assuntos
Biodegradação Ambiental , Cromo/metabolismo , Ácido Láctico , Microbiologia do Solo , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , Água Subterrânea/química , Itália , Oxirredução , Solo , Leveduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...