Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Hemorheol Microcirc ; 79(1): 217-230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34487028

RESUMO

Human induced pluripotent stem cells (hiPSCs) are a promising cell source to generate the patient-specific lung organoid given their superior differentiation potential. However, the current 3D cell culture approach is tedious and time-consuming with a low success rate and high batch-to-batch variability. Here, we explored the establishment of lung bud organoids by systematically adjusting the initial confluence levels and homogeneity of cell distribution. The efficiency of single cell seeding and clump seeding was compared. Instead of the traditional 3D culture, we established a 2.5D organoid culture to enable the direct monitoring of the internal structure via microscopy. It was found that the cell confluence and distribution prior to induction were two key parameters, which strongly affected hiPSC differentiation trajectories. Lung bud organoids with positive expression of NKX 2.1, in a single-cell seeding group with homogeneously distributed hiPSCs at 70% confluence (SC_70%_hom) or a clump seeding group with heterogeneously distributed cells at 90% confluence (CL_90%_het), can be observed as early as 9 days post induction. These results suggest that a successful lung bud organoid formation with single-cell seeding of hiPSCs requires a moderate confluence and homogeneous distribution of cells, while high confluence would be a prominent factor to promote the lung organoid formation when seeding hiPSCs as clumps. 2.5D organoids generated with defined culture conditions could become a simple, efficient, and valuable tool facilitating drug screening, disease modeling and personalized medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Técnicas de Cultura de Células , Diferenciação Celular , Humanos , Pulmão
2.
Clin Hemorheol Microcirc ; 79(1): 205-216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34487031

RESUMO

BACKGROUND: Polymeric materials have been widely used as artificial grafts in cardiovascular applications. These polymeric implants can elicit a detrimental innate and adaptive immune response after interacting with peripheral blood. A surface modification with components from extracellular matrices (ECM) may minimize the activation of immune cells from peripheral blood. The aim of this study is to compare the cellular response of blood-born immune cells to the fiber meshes from polyesteretherurethane (PEEUm) and PEEUm with ECM coating (PEEUm + E). MATERIALS AND METHODS: Electrospun PEEUm were used as-is or coated with human cardiac ECM. Different immune cells were isolated form human peripheral blood. Cytokine release profile from naïve and activated monocytes was assessed. Macrophage polarization and T cell proliferation, as indication of immune response were evaluated. RESULTS: There was no increase in cytokine release (IL-6, TNF-α, and IL-10) from activated monocytes, macrophages and mononuclear cells on PEEUm; neither upon culturing on PEEUm + E. Naïve monocytes showed increased levels of IL-6 and TNF-α, which were not present on PEEUm + E. There was no difference on monocyte derived macrophage polarization towards pro-inflammatory M1 or anti-inflammatory M2 on PEEUm and PEEUm + E. Moreover, T cell proliferation was not increased upon interacting with PEEUm directly. CONCLUSION: As PEEUm only elicits a minimal response from naïve monocytes but not from monocytes, peripheral blood mononuclear cells (PBMCs) or T cells, the slight improvement in response to PEEUm + E might not justify the additional effort of coating with a human ECM.


Assuntos
Leucócitos Mononucleares , Monócitos , Proliferação de Células , Citocinas , Humanos , Macrófagos
3.
Clin Hemorheol Microcirc ; 74(1): 53-66, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31743992

RESUMO

Microfibers with a core-shell structure can be produced by co-axial electrospinning, allowing for the functionalization of the outer layer with bioactive molecules. In this study, a thermoplastic, degradable polyesteretherurethane (PEEU), consisting of poly(p-dioxanone) (PPDO) and poly(ɛ-caprolactone) (PCL) segments with different PPDO to PCL weight ratios, were processed into fiber meshes by co-axial electrospinning with gelatin. The prepared PEEU fibers have a diameter of 1.3±0.5 µm and an elastic modulus of around 5.1±1.0 MPa as measured by tensile testing in a dry state at 37°C, while the PEEU/Gelatin core-shell fibers with a gelatin content of 12±6 wt% and a diameter of 1.5±0.5 µm possess an elastic modulus of 15.0±1.1 MPa in a dry state at 37 °C but as low as 0.7±0.7 MPa when hydrated at 37 °C. Co-axial electrospinning allowed for the homogeneous distribution of the gelatin shell along the whole microfiber. Gelatin with conjugated Fluorescein (FITC) remained stable on the PEEU fibers after 7 days incubation in Phosphate-buffered saline (PBS) at 37 °C. The gelatin coating on PEEU fibers lead to enhanced human adipose tissue derived mesenchymal stem cell (hADSC) attachment and a proliferation rate 81.7±34.1 % higher in cell number in PEEU50/Gelatin fibers after 7 days of cell culture when compared to PEEU fibers without coating. In this work, we demonstrate that water-soluble gelatin can be incorporated as the outer shell of a polymer fiber via molecular entanglement, with a sustained presence and role in enhancing stem cell attachment and proliferation.


Assuntos
Proliferação de Células/fisiologia , Gelatina/química , Células-Tronco Mesenquimais/metabolismo , Poliésteres/química , Polímeros/metabolismo , Engenharia Tecidual/métodos , Humanos , Alicerces Teciduais/química
4.
Clin Hemorheol Microcirc ; 73(1): 229-236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31561331

RESUMO

The mechanical properties of electrospun fiber meshes typically are measured by tensile testing at the macro-scale without precisely addressing the spatial scale of living cells and their submicron architecture. Atomic force microscopy (AFM) enables the examination of the nano- and micro-mechanical properties of the fibers with potential to correlate the structural mechanical properties across length scales with composition and functional behavior. In this study, a polyesteretherurethane (PEEU) polymer containing poly(p-dioxanone) (PPDO) and poly(ɛ-caprolactone) (PCL) segments was electrospun into fiber meshes or suspended single fibers. We employed AFM three point bending testing and AFM force mapping to measure the elastic modulus and stiffness of individual micro/nanofibers and the fiber mesh. The local stiffness of the fiber mesh including the randomized, intersecting structure was also examined for each individual fiber. Force mapping results with a set point of 50 nN demonstrated the dependence of the elasticity of a single fiber on the fiber mesh architecture. The non-homogeneous stiffness along the same fiber was attributed to the intersecting structure of the supporting mesh morphology. The same fiber measured at a point with and without axial fiber support showed a remarkable difference in stiffness, ranging from 0.2 to 10 nN/nm respectively. For the region, where supporting fibers densely intersected, the stiffness was found to be considerably higher. In the region where the degrees of freedom of the fibers was not restricted, allowing greater displacement, the stiffness were observed to be lower. This study elucidates the relationship between architecture and the mechanical properties of a micro/nanofiber mesh. By providing a greater understanding of the role of spatial arrangement and organization on the surface mechanical properties of such materials, we hope to provide insight into the design of microenvironments capable of regulating cell functionality.


Assuntos
Materiais Biocompatíveis/química , Microscopia de Força Atômica/métodos , Poliésteres/química , Humanos
5.
Clin Hemorheol Microcirc ; 71(4): 415-424, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31006679

RESUMO

 Lipid-containing adipocytes can dedifferentiate into fibroblast-like cells under appropriate culture conditions, which are known as dedifferentiated fat (DFAT) cells. However, the relative low dedifferentiation efficiency with the established protocols limit their widespread applications. In this study, we found that adipocyte dedifferentiation could be promoted via periodic exposure to cold (10°C) in vitro. The lipid droplets in mature adipocytes were reduced by culturing the cells in periodic cooling/heating cycles (10-37°C) for one week. The periodic temperature change led to the down-regulation of the adipogenic genes (FABP4, Leptin) and up-regulation of the mitochondrial uncoupling related genes (UCP1, PGC-1α, and PRDM16). In addition, the enhanced expression of the cell proliferation marker Ki67 was observed in the dedifferentiated fibroblast-like cells after periodic exposure to cold, as compared to the cells cultured in 37°C. Our in vitro model provides a simple and effective approach to promote lipolysis and can be used to improve the dedifferentiation efficiency of adipocytes towards multipotent DFAT cells.


Assuntos
Adipócitos/metabolismo , Temperatura Baixa/efeitos adversos , Adipócitos/citologia , Animais , Desdiferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...