Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 1: 157, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21423396

RESUMO

Epoxyeicosatrienoic acids (EETs) contribute importantly to the regulation of vascular tone and blood pressure control. The purpose of this study was to develop stable EET analogs and test their in vivo blood pressure lowering effects in hypertensive rats. Using the pharmacophoric moiety of EETs, ether EET analogs were designed with improved solubility and resistance to auto-oxidation and metabolism by soluble epoxide hydrolase. Ether EET analogs were chosen based on their ability to dilate afferent arterioles and subsequently tested for blood pressure lowering effects in rodent models of hypertension. Initially, 11,12-ether-EET-8-ZE failed to lower blood pressure in angiotensin hypertension or spontaneously hypertensive rats (SHR). Esterification of the carboxylic group of 11,12-ether-EET-8-ZE prevented blood pressure increase in SHR when injected at 2 mg/day for 12 days (MAP Δ change at day 8 of injection was -0.3 ± 2 for treated and 12 ± 1 mmHg for control SHR). Amidation of the carboxylic group with aspartic acid produced another EET analog (NUDSA) with a blood pressure lowering effect when injected at 3 mg/day in SHR for 5 days. Amidation of the carboxylic group with lysine amino acid produced another analog with minimal blood pressure lowering effect. These data suggest that esterification of the carboxylic group of 11,12-ether-EET-8-ZE produced the most effective ether-EET analog in lowering blood pressure in SHR and provide the first evidence to support the use of EET analogs in treatment of cardiovascular diseases.

2.
J Pharmacol Exp Ther ; 324(3): 1019-27, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18171909

RESUMO

Epoxyeicosatrienoic acids (EETs) are important regulators of vascular tone and homeostasis. Whether they initiate signaling through membrane receptors is unclear. We developed 20-iodo-14,15-epoxyeicosa-8(Z)-enoic acid (20-I-14,15-EE8ZE), a radiolabeled EET agonist, to characterize EET binding to membranes of U937 cells. 20-I-14,15-EE8ZE stimulated cAMP production in U937 cells with similar potency, but it decreased efficacy compared with 11,12-EET. Maximum cAMP production increased 4.2-fold, with an EC(50) value of 9 muM. Like 14,15-EET, 20-I-14,15-EE8ZE relaxed bovine coronary arteries, with a similar EC(50) value. Both 20-I-14,15-EE8ZE agonist activities were blocked by the EET antagonist 14,15-epoxyeicosa-5(Z)enoic acid (14,15-EE5ZE). Specific 20-(125)I-14,15-EE8ZE binding to U937 membranes reached equilibrium within 10 min and remained unchanged for 30 min at 4 degrees C. The binding was saturable, reversible, and exhibited K(D) and B(max) values of 11.8 +/- 1.1 nM and 5.8 +/- 0.2 pmol/mg protein, respectively. Pretreatment of the membranes with guanosine 5'-O-(3-thio)triphosphate reduced the B(max) in a concentration-related manner. 20-(125)I-14,15-EE8ZE binding was inhibited by eicosanoids with potency order of 11,12-EET >14,15-EE5ZE approximately 14,15-EET >> 15-hydroxyeicosatetraenoic acid > 14,15-EET-thiirane >14,15-dihydroxyeicosatrienoic acid. This order is in agreement with the efficacy and potency of cAMP production. In summary, 20-(125)I-14,15-EE8ZE is a radiolabeled EET agonist that is useful to study binding and metabolism. Using this radioligand, we have identified a specific high-affinity and high-abundance EET binding site in U937 cell membranes. This binding site could represent a specific EET receptor, which is probably a G protein-coupled receptor.


Assuntos
Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Membrana Celular/metabolismo , Radioisótopos do Iodo/química , Radioisótopos do Iodo/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Bovinos , Membrana Celular/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Relação Dose-Resposta a Droga , Humanos , Células U937
3.
J Mol Neurosci ; 33(1): 18-24, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17901541

RESUMO

The endocannabinoid, N-arachidonylethanolamine (AEA) is accumulated by neurons via a process that has been characterized biochemically but not molecularly. Inhibitors of AEA accumulation have been characterized individually but have not been compared in a single study. Our purpose was to compare the potency of five previously described compounds (AM404, AM1172, VDM11, OMDM-2, and UCM707) both as inhibitors of AEA and N-palmitoylethanolamine (PEA) accumulation by cerebellar granule neurons and as inhibitors of AEA hydrolysis. The compounds all inhibited AEA accumulation; AM404, VDM11 and OMDM-2 with IC(50) values of approximately 5 microM, whereas AM1172 and UCM707 exhibited IC(50) values of 24 and 30 microM, respectively. The compounds also inhibited PEA accumulation; AM404 being the most potent with an IC(50) of 6 microM, whereas the other compounds had IC(50) values in the range of 30-70 microM. All of the compounds potently inhibited AEA hydrolysis by brain membranes; the K(I) values for AM404, VDM11, and UCM707 were less than 1 microM; AM1172 and OMDM-2 exhibited K(I) values of 3 and 10 microM, respectively. The IC(50) values for inhibition of AEA accumulation were compared to the IC(50) values for PEA accumulation and AEA hydrolysis using linear regression. None of the regressions were significant. These data indicate that inhibition of AEA accumulation by neurons is not a result of the inhibition of endocannabinoid hydrolysis and is a process different from the accumulation of PEA. These studies support the hypothesis that the cellular AEA accumulation beyond simple equilibrium between intracellular and extracellular concentrations occurs because AEA binds to an intracellular protein that is not FAAH but that also recognizes the AEA uptake inhibitors.


Assuntos
Amidoidrolases/antagonistas & inibidores , Ácidos Araquidônicos/metabolismo , Moduladores de Receptores de Canabinoides/metabolismo , Cerebelo/citologia , Neurônios/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Amidoidrolases/metabolismo , Animais , Ácidos Araquidônicos/química , Benzamidas/química , Benzamidas/metabolismo , Compostos de Benzil/química , Compostos de Benzil/metabolismo , Células Cultivadas , Endocanabinoides , Feminino , Furanos/química , Furanos/metabolismo , Masculino , Camundongos , Neurônios/citologia , Alcamidas Poli-Insaturadas/química , Ratos , Ratos Sprague-Dawley
4.
J Labelled Comp Radiopharm ; 49(3): 245-252, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16951707

RESUMO

Deuterated arachidonic acid and 20-HETE were prepared in good overall yields and high stereoselectivities. Key transformations include a trans-specific vinyl dibromide reduction and Suzuki cross-couplings to a lithium borate or a 9-BBN borane. These standards are three and two mass units higher, respectively, than their naturally occurring counterparts and are useful in mass spectrometry analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...