Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Chem ; 18(1): 102, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773663

RESUMO

BACKGROUND: Carbazole-based molecules containing thiosemicarbazide functional groups are recognized for their diverse biological activities, particularly in enhancing therapeutic anticancer effects through inhibiting crucial pathways. These derivatives also exhibit noteworthy antioxidant properties. OBJECTIVES: This study aims to synthesize, characterize, and evaluate the antioxidant and anticancer activities of 18 novel carbazole derivatives. METHODS: The radical scavenging capabilities of the compounds were assessed using the 2,2-diphenyl-1-picrylhydrazyl assay. Antiproliferative activities were evaluated on MCF-7 cancer cell lines through viability assays. Additionally, the modulation of the PI3K/Akt/mTOR pathway, apoptosis/necrosis induction, and cell cycle analysis were conducted for the most promising anticancer agents. RESULTS: nine compounds showed potent antioxidant activities with IC50 values lower than the positive control acarbose, with compounds 4 h and 4y exhibiting the highest potency (IC50 values of 0.73 and 0.38 µM, respectively). Furthermore, compounds 4o and 4r displayed significant anticancer effects, with IC50 values of 2.02 and 4.99 µM, respectively. Compound 4o, in particular, exhibited promising activity by targeting the PI3K/Akt/mTOR signaling pathway, inhibiting tumor survival, inducing apoptosis, and causing cell cycle arrest in MCF-7 cell lines. Furthermore, compound 4o was showed significant antimicrobial activities against S. aureus and E. coli, and antifungal effect against C. albicans. Its potential to overcome drug resistance through this pathway inhibition highlights its promise as an anticancer agent. Molecular docking simulations supported these findings, revealing favorable binding profiles and interactions within the active sites of the enzymes PI3K, AKT1, and mTOR. Moreover, assessing the druggability of the newly synthesized thiosemicarbazide derivatives demonstrated optimal physicochemical properties, further endorsing their potential as drug candidates.

2.
Chem Biodivers ; 21(2): e202301422, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38156745

RESUMO

The extracellular signal-regulated kinase (ERK) - mitogen-activated protein kinase (MAPK) pathway regulates cell proliferation, differentiation, and apoptosis. Heat Shock Protein 90 (HSP90) is required to activate proto-oncogenic protein kinases and promotes tumor growth through anti-apoptotic effects on A549-non-small cell lung cancer (NSCLC). Therefore, deregulation of the ERK-MAPK pathway and abnormal expression of HSP90 are reasonably frequent events in NSCLC. In this study, novel perimidine-pyrazole compounds employed to block ERK-MAPK deregulation through inhibiting HSP dependent cancer cell survival mechanisms. A set of perimidine-pyrazole derivatives effects was monitored on NSCLC cell line. Array experiments performed to understand the effect of the compounds on signaling pathways and results were analyzed by gene enrichment analysis. Further, senescence and apoptosis experiments were performed to support the enrichment results along with in silico methods to determine perimidine-pyrazole/HSP interactions. Treatment of NSCLC cells with perimidine-pyrazole derivatives displayed cancer-inhibitory, pro-senescent and pro-apoptotic effects on NSCLC cells through ERK/MAPK pathway and these compounds are promising templates for designing anticancer drugs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral , Transdução de Sinais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proliferação de Células , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Apoptose
3.
Cytoskeleton (Hoboken) ; 80(11-12): 437-447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37439368

RESUMO

Katanin is a microtubule severing protein belonging to the ATPase family and consists of two subunits; p60-katanin synthesized by the KATNA1 gene and p80-katanin synthesized by the KATNB1 gene. Microtubule severing is one of the mechanisms that allow the reorganization of microtubules depending on cellular needs. While this reorganization of microtubules is associated with mitosis in dividing cells, it primarily takes part in the formation of structures such as axons and dendrites in nondividing mature neurons. Therefore, it is extremely important in neuronal branching. p60 and p80 katanin subunits coexist in the cell. While p60-katanin is responsible for cutting microtubules with its ATPase function, p80-katanin is responsible for the regulation of p60-katanin and its localization in the centrosome. Although katanin has vital functions in the cell, there are no known posttranscriptional regulators of it. MicroRNAs (miRNAs) are a group of small noncoding ribonucleotides that have been found to have important roles in regulating gene expression posttranscriptionally. Despite being important in gene regulation, so far no microRNA has been experimentally associated with katanin regulation. In this study, the effects of miR-124-3p, which we detected as a result of bioinformatics analysis to have the potential to bind to the p60 katanin mRNA, were investigated. For this aim, in this study, SH-SY5Y neuroblastoma cells were transfected with pre-miR-124-3p mimics and pre-mir miRNA precursor as a negative control, and the effect of this transfection on p60-katanin expression was measured at both RNA and protein levels by quantitative real-time PCR (qRT-PCR) and western blotting, respectively. The results of this study showed for the first time that miR-124-3p, which was predicted to bind p60-katanin mRNA by bioinformatic analysis, may regulate the expression of the KATNA1 gene. The data obtained within the scope of this study will make important contributions in order to better understand the regulation of the expression of p60-katanin which as well will have an incontrovertible impact on the understanding of the importance of cytoskeletal reorganization in both mitotic and postmitotic cells.


Assuntos
MicroRNAs , Neuroblastoma , Humanos , Katanina/genética , Katanina/metabolismo , Neuroblastoma/metabolismo , Microtúbulos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...