Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 22(48): 485705, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22071779

RESUMO

We demonstrate magnetic switching between two 360° domain wall vortex states in cobalt nanorings, which are candidate magnetic states for robust and low power magnetoresistive random access memory (MRAM) devices. These 360° domain wall (DW) or 'twisted onion' states can have clockwise or counterclockwise circulation, the two states for data storage. Reliable switching between the states is necessary for any realistic device. We accomplish this switching by applying a circular Oersted field created by passing current through a metal atomic force microscope tip placed at the center of the ring. After initializing in an onion state, we rotate the DWs to one side of the ring by passing a current through the center, and can switch between the two twisted states by reversing the current, causing the DWs to split and meet again on the opposite side of the ring. A larger current will annihilate the DWs and create a perfect vortex state in the rings.

2.
Rev Sci Instrum ; 81(1): 014902, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20113122

RESUMO

We have developed a depth-resolved confocal thermal imaging technique that is capable of measuring the temperature distribution of an encapsulated or semi-obstructed device. The technique employs lock-in charge coupled device-based thermoreflectance imaging via a Nipkow disk confocal microscope, which is used to eliminate extraneous reflections from above or below the imaging plane. We use the confocal microscope to predict the decrease in contrast and dynamic range due to an obstruction for widefield thermoreflectance, and we demonstrate the ability of confocal thermoreflectance to maintain a high contrast and thermal sensitivity in the presence of large reflecting obstructions in the optical path.

3.
Science ; 290(5499): 2126-9, 2000 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11118143

RESUMO

We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 x 10(11) wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...