Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 92(3): 2620-2627, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31916434

RESUMO

Changes in the tertiary conformation of adsorbed biomolecules can induce detectable shifts (Δθr) in the surface plasmon resonance (SPR) angle. Here it is shown how to calculate the corresponding shifts in the adsorbate's center of mass (Δzavg) along the sensing surface normal from the measured Δθr. The novel developed model was used for determining the mean distance between the cytochrome (CYT) and flavodehydrogenase (DH) domains of the enzyme cellobiose dehydrogenase (CDH) isolated from the fungi Neurospora crassa, Corynascus thermophilus, and Myriococcum thermophilum as a function of pH, [Ca2+], and substrate concentration. SPR confirmed the results from earlier electrochemical and SAXS studies stating that the closed conformation, where the two domains are in close vicinity, is stabilized by a lower pH and an increased [Ca2+]. Interestingly, an increasing substrate concentration in the absence of any electron acceptors stabilizes the open conformation as the electrostatic repulsion due to the reaped electrons pushes the DH and CYT domains apart. The accuracy of distance determination was limited mostly by the random fluctuations between replicate measurements, and it was possible to detect movements <1 nm of the domains with respect to each other. The results agreed with calculations using already established models treating conformational changes as contraction or expansion of the thickness of the adsorbate layer (tprotein). Although the models yielded equivalent results, in this case, the Δzavg-based method also works in situations, where the adsorbate's mass is not evenly distributed within the layer.


Assuntos
Desidrogenases de Carboidrato/química , Citocromos/química , Desidrogenases de Carboidrato/metabolismo , Citocromos/metabolismo , Técnicas Eletroquímicas , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Modelos Moleculares , Neurospora crassa/enzimologia , Sordariales/enzimologia , Ressonância de Plasmônio de Superfície
2.
Anal Chem ; 89(5): 3069-3077, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28192972

RESUMO

Because of cell to cell variation, it is difficult to obtain statistically significant data on the frequency of exocytosis events (Rexocytosis, t-1 m-2) with traditional single cell electrophysiological or fluorescence microscopy based methods. Here we take the first steps toward a rapid cost-effective surface plasmon resonance (SPR) based method for measuring the Rexocytosis for populations of PC12 cells. The conditions for culturing confluent monolayers on the sensor slides were optimized, and neurotransmitter exocytosis was evoked by injecting solutions with elevated [K+]. Exocytosis caused a shift of the resonance angle (Δθr) that was linearly proportional to Rexocytosis. The Δθr was mainly due to elevated concentration of secretory vesicles close to the cell membrane. The increased vesicle concentration thus acted as a proxy for the Rexocytosis that could not be measured directly. The Δθr was calibrated for Rexocytosis using single cell amperometry on parallel cell cultures. The cell populations were large enough for variation in responses between sensor slides to only reflect actual differences in biological condition. The applicability for drug screening is demonstrated by studying the effects of EGTA, reserpine, and prolonged stimulation by K+.

3.
Langmuir ; 32(41): 10632-10640, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27661193

RESUMO

The capabilities of surface plasmon resonance (SPR) for characterization of colloidal particles were evaluated for 100, 300, and 460 nm nominal diameter polystyrene (PS) latexes. First the accuracy of measuring the effective refractive index (neff) of turbid colloids using SPR was quantified. It was concluded that for submicrometer sized PS particles the accuracy is limited by the reproducibility between replicate injections of samples. An SPR method was developed for obtaining the particle mean diameter (dpart) and the particle number concentration (cp) by fitting the measured neff of polystyrene (PS) colloids diluted in series with theoretical values calculated using the coherent scattering theory (CST). The dpart and cp determined using SPR agreed with reference values obtained from size distributions measured by scanning electron microscopy (SEM), and the mass concentrations stated by the manufacturer. The 100 nm particles adsorbed on the sensing surface, which hampered the analysis. Once the adsorption problem has been overcome, the developed SPR method has potential to become a versatile tool for characterization of colloidal particles. In particular, SPR could form the basis of rapid and accurate methods for measuring the cp of submicrometer particles in dispersion.

4.
Sci Technol Adv Mater ; 15(3): 035009, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27877685

RESUMO

There can be a large variation in the measured diameter of nanoparticles depending on which method is used. In this work, we have strived to accurately determine the mean particle diameter of 30-40 nm colloidal silica particles by using six different techniques. A quantitative agreement between the particle size distributions was obtained by scanning electron microscopy (SEM), and electrospray-scanning mobility particle sizer (ES-SMPS). However, transmission electron microscopy gave a distribution shifted to smaller sizes. After confirming that the magnification calibration was consistent, this was attributed to sample preparation artifacts. The hydrodynamic diameter, dh , was determined by dynamic light scattering (DLS) both in batch mode, and hyphenated with sedimentation field flow fractionation. Surprisingly the dh were smaller than the SEM, and ES-SMPS diameters. A plausible explanation for the smaller sizes found with DLS is that a permeable gel layer forms on the particle surface. Results from nanoparticle tracking analysis were strongly biased towards larger diameters, most likely because the silica particles provide low refractive index contrast. Calculations confirmed that the sensitivity is, depending on the shape of the laser beam, strongly size dependent for particles with diameters close to the visualization limit.

5.
Anal Chem ; 84(9): 3965-72, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22483433

RESUMO

The detection capabilities of single particle inductively coupled plasma-mass spectrometry (spICPMS) with respect to particle size and number concentrations are investigated for the case of silver nanoparticles (ca. 20-80 nm). An iterative algorithm was developed where particle measurement events were distinguished as outliers from the more continuous dissolved ion signal if the measured intensity was more than five times the standard deviation of the whole data set. The optimal dwell time for 40-80 nm particles, limiting both incomplete and multiple particle events, was 5 ms. The smallest detectable particle size (ca. 20 nm) is mainly limited by the overlap of particle events and dissolved signal that increases with noise on both signals. The lowest measurable number concentration is limited by the relative frequency of erroneously identified particle events, a limit that can be reduced by acquiring more data points. Finally, the potential of spICPMS for environmental detection of nanoparticles is demonstrated for a wastewater treatment plant effluent sample.

6.
Environ Int ; 37(6): 1057-62, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21470683

RESUMO

The increasing number of nanomaterial based consumer products raises concerns about their possible impact on the environment. This study provides an assessment of the effluent from a commercially available silver nanowashing machine. The washing machine released silver in its effluent at an average concentration of 11µgL(-1), as determined by inductive coupled mass spectrometry (ICP-MS). The presence of silver nanoparticles (AgNPs) was confirmed by single particle ICP-MS as well as ion selective electrode measurements and filtration techniques. Size measurements showed particles to be in the defined nanosize range, with an average size of 10nm measured with transmission electron microscopy (TEM) and 60-100nm determined with nanoparticle tracking analysis (NTA). The effluent was shown to have negative effects on a natural bacterial community as its abundance was clearly reduced when exposed to the nanowash water. If washing machines capable of producing AgNPs become a common feature of households in the future, wastewater will contain significant loadings of AgNPs which might be released into the environment.


Assuntos
Detergentes/química , Utensílios Domésticos , Nanopartículas Metálicas/química , Prata/química , Poluentes Químicos da Água/química , Bactérias/efeitos dos fármacos , Vestuário , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/toxicidade , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Prata/análise , Prata/toxicidade , Eliminação de Resíduos Líquidos , Microbiologia da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...