Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37043525

RESUMO

Termites are dominant animals of tropical terrestrial ecosystems. Their success is due to their eusocial organization as well as their ability to digest dead plant tissues. While being extremely abundant, the termite diet is poor in crucial nutrients, such as fatty acids. Linoleic acid (LA) is a precursor for many vital biomolecules, and most animals depend on its dietary supply. Termites count among the exceptions known to produce LA de novo, presumably via the action of an unknown Δ12 fatty acyl desaturase (FAD) introducing the second double bond into monounsaturated oleic acid. Here, we search for the evolutionary origin of LA biosynthesis in termites. To this end, we compile the repertoire of FAD homologs from 57 species of termites and their closest relatives, the cockroaches, analyze FAD phylogeny, and identify a potential Δ12 FAD branch, which arose through duplication of a likely Δ9 FAD. We functionally characterize both paralogs and identify the Δ9 activity in the ancestral FAD-A1a and the Δ12 activity responsible for LA biosynthesis in FAD-A1b. Through the combination of homology modeling and site-directed mutagenesis, we pinpoint structural features possibly contributing to the distinct functions, regiospecificities, and substrate preferences of the two enzymes. We confirm the presence of both paralogs in all 36 studied species of the Blattoidea lineage (Blattidae, Lamproblattidae, Cryptocercidae, and termites) and conclude that we identified an evolutionary event important for the ecological success of termites, which took place in their cockroach ancestors roughly 160 My and remained conserved throughout termite diversification into 3,000 extant species.


Assuntos
Baratas , Isópteros , Animais , Ácido Linoleico , Isópteros/genética , Ecossistema , Filogenia , Ácidos Graxos
2.
J Fungi (Basel) ; 9(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675935

RESUMO

One of the most interesting groups of fatty acid derivates is the group of conjugated fatty acids from which the most researched include: conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA), which are associated with countless health benefits. Sex pheromone mixtures of some insect species, including tobacco horn-worm (Manduca sexta), are typical for the production of uncommon C16 long conjugated fatty acids with two and three conjugated double bonds, as opposed to C18 long CLA and CLNA. In this study, M. sexta desaturases MsexD2 and MsexD3 were expressed in multiple strains of Y. lipolytica with different genotypes. Experiments with the supplementation of fatty acid methyl esters into the medium resulted in the production of novel fatty acids. Using GCxGC-MS, 20 new fatty acids with two or three double bonds were identified. Fatty acids with conjugated or isolated double bonds, or a combination of both, were produced in trace amounts. The results of this study prove that Y. lipolytica is capable of synthesizing C16-conjugated fatty acids. Further genetic optimization of the Y. lipolytica genome and optimization of the fermentation process could lead to increased production of novel fatty acid derivatives with biotechnologically interesting properties.

3.
Comput Struct Biotechnol J ; 20: 1378-1388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386101

RESUMO

A recently proposed reaction mechanism of soluble Δ9 desaturase (Δ9D) allowed us to identify auxiliary residues His203, Asp101, Thr206 and Cys222 localized near the di-iron active site that are supposedly involved in the proton transfer (PT) to and from the active site. The PT, along with the electron transfer (ET), seems to be crucial for efficient desaturation. Thus, perturbing the major PT chains is expected to impair the native reaction and (potentially) amplify minor reaction channels, such as the substrate hydroxylation. To verify this hypothesis, we mutated the four residues mentioned above into their counterparts present in a soluble methane monooxygenase (sMMO), and determined the reaction products of mutants. We found that the mutations significantly promote residual monohydroxylation activities on stearoyl-CoA, often at the expense of native desaturation activity. The favored hydroxylation positions are C9, followed by C10 and C11. Reactions with unsaturated substrate, oleoyl-CoA, yield erythro-9,10-diol, cis-9,10-epoxide and a mixture of allylic alcohols. Additionally, using 9- and 11-hydroxystearoyl-CoA, we showed that the desaturation reaction can proceed only with the hydroxyl group at position C11, whereas the hydroxylation reaction is possible in both cases, i.e. with hydroxyl at position C9 or C11. Despite the fact that the overall outcome of hydroxylation is rather modest and that it is mostly the desaturation/hydroxylation ratio that is affected, our results broaden understanding of the origin of chemo- and stereoselectivity of the Δ9D and provide further insight into the catalytic action of the NHFe2 enzymes.

4.
Comput Struct Biotechnol J ; 18: 1202-1209, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32542106

RESUMO

Membrane fatty acyl desaturases (mFAD) are ubiquitous enzymes in eukaryotes. They introduce double bonds into fatty acids (FAs), producing structurally diverse unsaturated FAs which serve as membrane lipid components or precursors of signaling molecules. The mechanisms controlling enzymatic specificity and selectivity of desaturation are, however, poorly understood. We found that the physicochemical properties, particularly side chain volume, of a single amino acid (aa) residue in insect mFADs (Lepidoptera: Bombyx mori and Manduca sexta) control the desaturation products. Molecular dynamics simulations of systems comprising wild-type or mutant mFADs with fatty acyl-CoA substrates revealed that the single aa substitution likely directs the outcome of the desaturation reaction by modulating the distance between substrate fatty acyl carbon atoms and active center metal ions. These findings, as well as our methodology combining mFAD mutational screening with molecular dynamics simulations, will facilitate prediction of desaturation products and facilitate engineering of mFADs for biotechnological applications.

5.
Front Bioeng Biotechnol ; 8: 593419, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33490049

RESUMO

Fatty alcohols (FA-OH) are aliphatic unbranched primary alcohols with a chain of four or more carbon atoms. Besides potential industrial applications, fatty alcohols have important biological functions as well. In nature, fatty alcohols are produced as a part of a mixture of pheromones in several insect species, such as moths, termites, bees, wasps, etc. In addition, FA-OHs have a potential for agricultural applications, for example, they may be used as a suitable substitute for commercial insecticides. The insecticides have several drawbacks associated with their preparation, and they exert a negative impact on the environment. Currently, pheromone components are prepared mainly through the catalytic hydrogenation of plant oils and petrochemicals, which is an unsustainable, ecologically unfriendly, and highly expensive process. The biotechnological production of the pheromone components using engineered microbial strains and through the expression of the enzymes participating in the biosynthesis of these components is a promising approach that ensures ecological sustenance as well. The present study was aimed at evaluating the production of FA-OHs in the oleaginous yeast, Yarrowia lipolytica, with different lengths of fatty-acyl chains by expressing the fatty acyl-CoA reductase (FAR) BlapFAR4 from B. lapidarius, producing C16:0-OH, C16:1Δ9-OH, and lower quantities of both C14:0-OH and C18:1Δ9-OH, and BlucFAR1 from B. lucorum, producing FA-OHs with a chain length of 18-26 carbon atoms, in this yeast. Among the different novel Y. lipolytica strains used in the present study, the best results were obtained with JMY7086, which carried several lipid metabolism modifications and expressed the BlucFAR1 gene under the control of a strong constitutive promoter 8UAS-pTEF. JMY7086 produced only saturated fatty alcohols with chain lengths from 18 to 24 carbon atoms. The highest titer and accumulation achieved were 166.6 mg/L and 15.6 mg/g DCW of fatty alcohols, respectively. Unlike JMY7086, the BlapFAR4-expressing strain JMY7090 produced only 16 carbon atom-long FA-OHs with a titer of 14.6 mg/L.

6.
Elife ; 82019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30714899

RESUMO

Fatty acyl reductases (FARs) are involved in the biosynthesis of fatty alcohols that serve a range of biological roles. Insects typically harbor numerous FAR gene family members. While some FARs are involved in pheromone biosynthesis, the biological significance of the large number of FARs in insect genomes remains unclear.Using bumble bee (Bombini) FAR expression analysis and functional characterization, hymenopteran FAR gene tree reconstruction, and inspection of transposable elements (TEs) in the genomic environment of FARs, we uncovered a massive expansion of the FAR gene family in Hymenoptera, presumably facilitated by TEs. The expansion occurred in the common ancestor of bumble bees and stingless bees (Meliponini). We found that bumble bee FARs from the expanded FAR-A ortholog group contribute to the species-specific pheromone composition. Our results indicate that expansion and functional diversification of the FAR gene family played a key role in the evolution of pheromone communication in Hymenoptera.


Assuntos
Aldeído Oxirredutases/genética , Himenópteros/enzimologia , Feromônios/genética , Filogenia , Aldeído Oxirredutases/metabolismo , Sequência de Aminoácidos/genética , Animais , Elementos de DNA Transponíveis , Álcoois Graxos/metabolismo , Feromônios/biossíntese , Feromônios/metabolismo
7.
Z Naturforsch C J Biosci ; 72(9-10): 387-403, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28742527

RESUMO

There are more than one million described insect species. This species richness is reflected in the diversity of insect metabolic processes. In particular, biosynthesis of secondary metabolites, such as defensive compounds and chemical signals, encompasses an extraordinarily wide range of chemicals that are generally unparalleled among natural products from other organisms. Insect genomes, transcriptomes and proteomes thus offer a valuable resource for discovery of novel enzymes with potential for biotechnological applications. Here, we focus on fatty acid (FA) metabolism-related enzymes, notably the fatty acyl desaturases and fatty acyl reductases involved in the biosynthesis of FA-derived pheromones. Research on insect pheromone-biosynthetic enzymes, which exhibit diverse enzymatic properties, has the potential to broaden the understanding of enzyme specificity determinants and contribute to engineering of enzymes with desired properties for biotechnological production of FA derivatives. Additionally, the application of such pheromone-biosynthetic enzymes represents an environmentally friendly and economic alternative to the chemical synthesis of pheromones that are used in insect pest management strategies.


Assuntos
Aciltransferases/metabolismo , Biotecnologia/métodos , Proteínas de Insetos/metabolismo , Insetos/metabolismo , Aciltransferases/genética , Animais , Vias Biossintéticas/genética , Ácidos Graxos/metabolismo , Proteínas de Insetos/genética , Insetos/genética , Feromônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...