Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Anal Methods ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899488

RESUMO

Melanoma inhibitory activity protein (MIA) does obviously offer the potential to reveal clinical manifestations of melanoma. Despite a pressing need for effective diagnosis of this highly fatal disease, there are no clinically approved MIA detection ELISA kits available. A recommended MIA threshold has not yet been defined, mostly by reason of variability in immunoglobulins' affinity and stability, the difference in sample preparation and assay conditions. Here we present a pair of high-affinity DNA aptamers developed as an alternative recognition and binding element for MIA detection. Their stability and reproducible synthesis are expected to ensure this analysis under standard conditions. The devised aptamer-based solid-phase microassay of model standard and control human sera involves luciferase NLuc as a highly sensitive reporter. Bioluminescence dependence on MIA concentration ranges in a linear manner from 2.5 to 250 ng mL-1, providing a MIA detection limit of 1.67 ± 0.57 ng mL-1.

2.
Viruses ; 16(3)2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38543752

RESUMO

The human adenovirus (HAdV) is a common pathogen in children that can cause acute respiratory virus infection (ARVI). However, the molecular epidemiological and clinical information relating to HAdV among hospitalized children with ARVI is rarely reported in Russia. A 4-year longitudinal (2019-2022) study among hospitalized children (0-17 years old) with ARVI in Novosibirsk, Russia, was conducted to evaluate the epidemiological and molecular characteristics of HAdV. Statistically significant differences in the detection rates of epidemiological and virological data of all positive viral detections of HAdV were analyzed using a two-tailed Chi-square test. The incidence of HAdV and other respiratory viruses such as human influenza A and B viruses, respiratory syncytial virus, coronavirus, parainfluenza virus, metapneumovirus, rhinovirus, bocavirus, and SARS-CoV-2 was investigated among 3190 hospitalized children using real-time polymerase chain reaction. At least one of these respiratory viruses was detected in 74.4% of hospitalized cases, among which HAdV accounted for 4%. A total of 1.3% co-infections with HAdV were also registered. We obtained full-genome sequences of 12 HAdVs, which were isolated in cell cultures. Genetic analysis revealed the circulation of adenovirus of genotypes C1, C2, C5, C89, and 108 among hospitalized children in the period from 2019-2022.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Viroses , Criança , Humanos , Lactente , Recém-Nascido , Pré-Escolar , Adolescente , Adenovírus Humanos/genética , Criança Hospitalizada , Hospitalização , Infecções Respiratórias/epidemiologia , Federação Russa/epidemiologia , Variação Genética , Infecções por Adenovirus Humanos/epidemiologia
3.
Open Biol ; 14(1): 230366, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38290548

RESUMO

Ribosomal protein uS10, a product of the RPS20 gene, is an essential constituent of the small (40S) subunit of the human ribosome. Disruptive mutations in its gene are associated with a predisposition to hereditary colorectal carcinoma. Here, using HEK293T cells, we show that a deficiency of this protein leads to a decrease in the level of ribosomes (ribosomal shortage). RNA sequencing of the total and polysome-associated mRNA samples reveals hundreds of genes differentially expressed in the transcriptome (t)DEGs and translatome (p)DEGs under conditions of uS10 deficiency. We demonstrate that the (t)DEG and (p)DEG sets partially overlap, determine genes with altered translational efficiency (TE) and identify cellular processes affected by uS10 deficiency-induced ribosomal shortage. We reveal that translated mRNAs of upregulated (p)DEGs and genes with altered TE in uS10-deficient cells are generally more abundant and that their GC contents are significantly lower than those of the respective downregulated sets. We also observed that upregulated (p)DEGs have longer coding sequences. Based on our findings, we propose a combinatorial model describing the process of reorganization of mRNA translation under conditions of ribosomal shortage. Our results reveal rules according to which ribosomal shortage reorganizes the transcriptome and translatome repertoires of actively proliferating cells.


Assuntos
Proteínas Ribossômicas , Ribossomos , Humanos , Composição de Bases , Células HEK293 , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047141

RESUMO

Ribosomal protein uL15 (RPL27a) carries a specific modification, hydroxylation, at the His39 residue, which neighbors the CCA terminus of the E-site-bound tRNA at the mammalian ribosome. Under hypoxia, the level of hydroxylation of this protein decreases. We transiently transfected HEK293T cells with constructs expressing wild-type uL15 or mutated uL15 (His39Ala) incapable of hydroxylation, and demonstrated that ribosomes containing both proteins are competent in translation. By applying RNA-seq to the total cellular and polysome-associated mRNAs, we identified differentially expressed genes (DEGs) in cells containing exogenous uL15 or its mutant form. Analyzing mRNA features of up- and down-regulated DEGs, we found an increase in the level of more abundant mRNAs and shorter CDSs in cells with uL15 mutant for both translated and total cellular mRNAs. The level of longer and rarer mRNAs, on the contrary, decreased. Our data show how ribosome heterogeneity can change the composition of the translatome and transcriptome, depending on the properties of the translated mRNAs.


Assuntos
Biossíntese de Proteínas , Proteínas Ribossômicas , Humanos , Animais , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hidroxilação , Células HEK293 , Mutação , Mamíferos/metabolismo
5.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982223

RESUMO

Topoisomerase 1 (TOP1) is an enzyme that regulates DNA topology and is essential for replication, recombination, and other processes. The normal TOP1 catalytic cycle involves the formation of a short-lived covalent complex with the 3' end of DNA (TOP1 cleavage complex, TOP1cc), which can be stabilized, resulting in cell death. This fact substantiates the effectiveness of anticancer drugs-TOP1 poisons, such as topotecan, that block the relegation of DNA and fix TOP1cc. Tyrosyl-DNA phosphodiesterase 1 (TDP1) is able to eliminate TOP1cc. Thus, TDP1 interferes with the action of topotecan. Poly(ADP-ribose) polymerase 1 (PARP1) is a key regulator of many processes in the cell, such as maintaining the integrity of the genome, regulation of the cell cycle, cell death, and others. PARP1 also controls the repair of TOP1cc. We performed a transcriptomic analysis of wild type and PARP1 knockout HEK293A cells treated with topotecan and TDP1 inhibitor OL9-119 alone and in combination. The largest number of differentially expressed genes (DEGs, about 4000 both up- and down-regulated genes) was found in knockout cells. Topotecan and OL9-119 treatment elicited significantly fewer DEGs in WT cells and negligible DEGs in PARP1-KO cells. A significant part of the changes caused by PARP1-KO affected the synthesis and processing of proteins. Differences under the action of treatment with TOP1 or TDP1 inhibitors alone were found in the signaling pathways for the development of cancer, DNA repair, and the proteasome. The drug combination resulted in DEGs in the ribosome, proteasome, spliceosome, and oxidative phosphorylation pathways.


Assuntos
Diester Fosfórico Hidrolases , Topotecan , Sistemas CRISPR-Cas , DNA , Reparo do DNA , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Esterases/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Topotecan/farmacologia , Transcriptoma , Poli(ADP-Ribose) Polimerase-1/metabolismo
6.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361851

RESUMO

Tandemly arranged and dispersed repetitive DNA sequences are important structural and functional elements that make up a significant portion of vertebrate genomes. Using high throughput, low coverage whole genome sequencing followed by bioinformatics analysis, we have identified seven major tandem repetitive DNAs and two fragments of LTR retrotransposons in the genome of the Nile crocodile (Crocodylus niloticus, 2n = 32). The repeats showed great variability in structure, genomic organization, and chromosomal distribution as revealed by fluorescence in situ hybridization (FISH). We found that centromeric and pericentromeric heterochromatin of C. niloticus is composed of previously described in Crocodylus siamensis CSI-HindIII and CSI-DraI repetitive sequence families, a satellite revealed in Crocodylus porosus, and additionally contains at least three previously unannotated tandem repeats. Both LTR sequences identified here belong to the ERV1 family of endogenous retroviruses. Each pericentromeric region was characterized by a diverse set of repeats, with the exception of chromosome pair 4, in which we found only one type of satellite. Only a few repeats showed non-centromeric signals in addition to their centromeric localization. Mapping of 18S-28S ribosomal RNA genes and telomeric sequences (TTAGGG)n did not demonstrate any co-localization of these sequences with revealed centromeric and pericentromeric heterochromatic blocks.


Assuntos
Jacarés e Crocodilos , Animais , Jacarés e Crocodilos/genética , Hibridização in Situ Fluorescente , Centrômero/genética , Sequências Repetitivas de Ácido Nucleico , RNA Ribossômico 18S/genética
7.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293163

RESUMO

Flow-seq is a method that combines fluorescently activated cell sorting and next-generation sequencing to deduce a large amount of data about translation efficiency from a single experiment. Here, we constructed a library of fluorescent protein-based reporters preceded by a set of 648 natural 5'-untranslated regions (5'-UTRs) of Escherichia coli genes. Usually, Flow-seq libraries are constructed using uniform-length sequence elements, in contrast to natural situations, where functional elements are of heterogenous lengths. Here, we demonstrated that a 5'-UTR library of variable length could be created and analyzed with Flow-seq. In line with previous Flow-seq experiments with randomized 5'-UTRs, we observed the influence of an RNA secondary structure and Shine-Dalgarno sequences on translation efficiency; however, the variability of these parameters for natural 5'-UTRs in our library was smaller in comparison with randomized libraries. In line with this, we only observed a 30-fold difference in translation efficiency between the best and worst bins sorted with this factor. The results correlated with those obtained with ribosome profiling.


Assuntos
Escherichia coli , Ribossomos , Escherichia coli/genética , Escherichia coli/metabolismo , Regiões 5' não Traduzidas/genética , Ribossomos/genética , Ribossomos/metabolismo , Biblioteca Gênica , Biossíntese de Proteínas
8.
Front Immunol ; 13: 803229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052064

RESUMO

Background: B lymphocytes play a pivotal regulatory role in the development of the immune response. It was previously shown that deficiency in B regulatory cells (Bregs) or a decrease in their anti-inflammatory activity can lead to immunological dysfunctions. However, the exact mechanisms of Bregs development and functioning are only partially resolved. For instance, only a little is known about the structure of their B cell receptor (BCR) repertoires in autoimmune disorders, including multiple sclerosis (MS), a severe neuroinflammatory disease with a yet unknown etiology. Here, we elucidate specific properties of B regulatory cells in MS. Methods: We performed a prospective study of the transitional Breg (tBreg) subpopulations with the CD19+CD24highCD38high phenotype from MS patients and healthy donors by (i) measuring their content during two diverging courses of relapsing-remitting MS: benign multiple sclerosis (BMS) and highly active multiple sclerosis (HAMS); (ii) analyzing BCR repertoires of circulating B cells by high-throughput sequencing; and (iii) measuring the percentage of CD27+ cells in tBregs. Results: The tBregs from HAMS patients carry the heavy chain with a lower amount of hypermutations than tBregs from healthy donors. The percentage of transitional CD24highCD38high B cells is elevated, whereas the frequency of differentiated CD27+ cells in this transitional B cell subset was decreased in the MS patients as compared with healthy donors. Conclusions: Impaired maturation of regulatory B cells is associated with MS progression.


Assuntos
Linfócitos B Reguladores , Esclerose Múltipla , Humanos , Interleucina-10 , Estudos Prospectivos , Receptores de Antígenos de Linfócitos B
9.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36077143

RESUMO

The RNA cytosine C5 methyltransferase NSUN2 has a variety of RNA substrates and plays an important role in mRNA metabolism. NSUN2 binds to specific sequences enriched in exosomal mRNAs, suggesting its possible involvement in the sorting of mRNAs into exosomes. We applied the photoactivatable.4-thiouridine-enhanced cross-linking and immunoprecipitation assay involving high-throughput RNA sequencing (RNA-seq) to HEK293T cells to determine NSUN2 mRNA targets. NSUN2 cross-linking sites were found in more than one hundred relatively abundant mRNAs with a high GC content and a pronounced secondary structure. Then, utilizing RNA-seq for the total and polysome-associated mRNA from HEK293T cells with and without the knockdown of NSUN2, we identified differentially expressed genes, as well as genes with altered translational efficiency (GATEs). It turned out that the up-regulated GATE mRNAs were much shorter on average than the down-regulated ones, and their GC content was higher; moreover, they contained motifs with C residues located in GC-rich environments. Our findings reveal the specific features of mRNAs that make them potential targets for NSUN2 and expand our understanding of the role of NSUN2 in controlling translation and, possibly, in mRNA sorting into exosomes implemented through the methylation of cytosine residues.


Assuntos
Metiltransferases , RNA Mensageiro/metabolismo , Células HEK293 , Humanos , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/química
10.
Int J Mol Sci ; 23(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35682850

RESUMO

A number of mutations in the RPS20 gene encoding the ribosomal protein uS10 have been found to be associated with a predisposition to hereditary non-polyposis colorectal carcinoma (CRC). We transfected HEK293T cells with constructs carrying the uS10 minigene with mutations identical to those mentioned above and examined the effects of the produced proteins on the cellular transcriptome. We showed that uS10 with mutations p.V50SfsX23 or p.L61EfsX11 cannot be incorporated into 40S ribosomal subunits, while the protein with the missense mutation p.V54L functionally replaces the respective endogenous protein in the 40S subunit assembly and the translation process. The comparison of RNA-seq data obtained from cells producing aberrant forms of uS10 with data for those producing the wild-type protein revealed overlapping sets of upregulated and downregulated differently expressed genes (DEGs) related to several pathways. Among the limited number of upregulated DEGs, there were genes directly associated with the progression of CRC, e.g., PPM1D and PIGN. Our findings indicate that the accumulation of the mutant forms of uS10 triggers a cascade of cellular events, similar to that which is triggered when the cell responds to a large number of erroneous proteins, suggesting that this may increase the risk of cancer.


Assuntos
Neoplasias Colorretais , Proteínas Ribossômicas , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Suscetibilidade a Doenças , Células HEK293 , Humanos , Mutação , Proteínas Ribossômicas/genética , Transcriptoma
11.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948282

RESUMO

Protein uL5 (formerly called L11) is an integral component of the large (60S) subunit of the human ribosome, and its deficiency in cells leads to the impaired biogenesis of 60S subunits. Using RNA interference, we reduced the level of uL5 in HEK293T cells by three times, which caused an almost proportional decrease in the content of the fraction corresponding to 80S ribosomes, without a noticeable diminution in the level of polysomes. By RNA sequencing of uL5-deficient and control cell samples, which were those of total mRNA and mRNA from the polysome fraction, we identified hundreds of differentially expressed genes (DEGs) at the transcriptome and translatome levels and revealed dozens of genes with altered translational efficiency (GATEs). Transcriptionally up-regulated DEGs were mainly associated with rRNA processing, pre-mRNA splicing, translation and DNA repair, while down-regulated DEGs were genes of membrane proteins; the type of regulation depended on the GC content in the 3' untranslated regions of DEG mRNAs. The belonging of GATEs to up-regulated and down-regulated ones was determined by the coding sequence length of their mRNAs. Our findings suggest that the effects observed in uL5-deficient cells result from an insufficiency of translationally active ribosomes caused by a deficiency of 60S subunits.


Assuntos
Regulação da Expressão Gênica/genética , Proteínas Ribossômicas/deficiência , Proteínas Ribossômicas/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Células HEK293 , Humanos , Biossíntese de Proteínas/fisiologia , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Transcrição Gênica/fisiologia , Transcriptoma/genética
12.
Microorganisms ; 9(9)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576831

RESUMO

Micromycetes are known to secrete numerous enzymes of biotechnological and medical potential. Fibrinolytic protease-activator of protein C (PAPC) of blood plasma from micromycete Aspergillus ochraceus VKM-F4104D was obtained in recombinant form utilising the bacterial expression system. This enzyme, which belongs to the proteinase-K-like proteases, is similar to the proteases encoded in the genomes of Aspergillus fumigatus ATCC MYA-4609, A. oryzae ATCC 42149 and A. flavus 28. Mature PAPC-4104 is 282 amino acids long, preceded by the 101-amino acid propeptide necessary for proper folding and maturation. The recombinant protease was identical to the native enzyme from micromycete in terms of its biological properties, including an ability to hydrolyse substrates of activated protein C (pGlu-Pro-Arg-pNA) and factor Xa (Z-D-Arg-Gly-Arg-pNA) in conjugant reactions with human blood plasma. Therefore, recombinant PAPC-4104 can potentially be used in medicine, veterinary science, diagnostics, and other applications.

13.
Microorganisms ; 9(4)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916464

RESUMO

Lake Baikal is a unique oligotrophic freshwater lake with unusually cold conditions and amazing biological diversity. Studies of the lake's viral communities have begun recently, and their full diversity is not elucidated yet. Here, we performed DNA viral metagenomic analysis on integral samples from four different deep-water and shallow stations of the southern and central basins of the lake. There was a strict distinction of viral communities in areas with different environmental conditions. Comparative analysis with other freshwater lakes revealed the highest similarity of Baikal viromes with those of the Asian lakes Soyang and Biwa. Analysis of new data, together with previously published data allowed us to get a deeper insight into the diversity and functional potential of Baikal viruses; however, the true diversity of Baikal viruses in the lake ecosystem remains still unknown. The new metaviromic data will be useful for future studies of viral composition, distribution, and the dynamics associated with global climatic and anthropogenic impacts on this ecosystem.

14.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926116

RESUMO

The protein eL38 is one of the smallest proteins of the mammalian ribosome, which is a component of its large (60S) subunit. The haploinsufficiency of eL38 in mice leads to the Tail-short mutant phenotype characterized by defects in the development of the axial skeleton caused by the poor translation of mRNA subsets of Hox genes. Using the ribosome profiling assay applied to HEK293 cells knocked down of eL38, we examined the effects of the lack of eL38 in 60S subunits on gene expression at the level of translation. A four-fold decrease in the cell content of eL38 was shown to result in significant changes in the translational efficiencies of 150 genes. Among the genes, whose expression at the level of translation was enhanced, there were mainly those associated with basic metabolic processes; namely, translation, protein folding, chromosome organization, splicing, and others. The set of genes with reduced translation efficiencies contained those that are mostly involved in the processes related to the regulation of transcription, including the activation of Hox genes. Thus, we demonstrated that eL38 insufficiency significantly affects the expression of certain genes at the translational level. Our findings facilitate understanding the possible causes of some anomalies in eL38-deficient animals.


Assuntos
Regulação da Expressão Gênica/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Expressão Gênica/genética , Células HEK293 , Humanos , Biossíntese de Proteínas , RNA Mensageiro/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo , Transcriptoma/genética
15.
Cell Chem Biol ; 28(8): 1192-1205.e9, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33675681

RESUMO

Despite almost 40 years having passed from the initial discovery of ubiquitin (Ub), fundamental questions related to its intracellular metabolism are still enigmatic. Here we utilized fluorescent tracking for monitoring ubiquitin turnover in mammalian cells, resulting in obtaining qualitatively new data. In the present study we report (1) short Ub half-life estimated as 4 h; (2) for a median of six Ub molecules per substrate as a dynamic equilibrium between Ub ligases and deubiquitinated enzymes (DUBs); (3) loss on average of one Ub molecule per four acts of engagement of polyubiquitinated substrate by the proteasome; (4) direct correlation between incorporation of Ub into the distinct type of chains and Ub half-life; and (5) critical influence of the single lysine residue K27 on the stability of the whole Ub molecule. Concluding, our data provide a comprehensive understanding of ubiquitin-proteasome system dynamics on the previously unreachable state of the art.


Assuntos
Fluorescência , Ubiquitina/metabolismo , Células Cultivadas , Citometria de Fluxo , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Células HEK293 , Humanos , Oxazinas/síntese química , Oxazinas/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/análise
16.
Biochimie ; 184: 132-142, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33675855

RESUMO

The ribosomal protein eL38 is a component of the mammalian translation machine. The deletion of the Rpl38 locus in mice results in the Tail-short (Ts) mutant phenotype characterized by a shortened tail and other defects in the axial skeleton development. Here, using the next-generation sequencing of total RNA from HEK293 cells knocked down of eL38 mRNA by transfection with specific siRNAs, we examined the effect of reduced eL38 content on genomic transcription. An approximately 4-fold decrease in the level of eL38 was shown to cause changes in the expression of nearly 1500 genes. Among the down-regulated genes, there were those responsible for p53 activity, Ca2+ metabolism and several signaling processes, as well as genes involved in the organization and functioning of the cytoskeleton. The genes related to rRNA processing and translation, along with many others, including those whose dysregulation is associated with developmental disorders, turned out to be up-regulated. Thus, we demonstrated that the decreased RPL38 expression leads to a significant reorganization of genomic transcription. Our findings suggest a possible link between the balance of eL38 and genes implicated in osteogenesis, thereby contributing to the elucidation of the reasons for the appearance of the above Ts mutant phenotype in animals.


Assuntos
Genoma Humano , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Transcrição Gênica , Células HEK293 , Humanos , RNA Mensageiro/genética , Proteínas Ribossômicas/genética
17.
Proc Natl Acad Sci U S A ; 117(44): 27300-27306, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33087570

RESUMO

Conventional "bulk" PCR often yields inefficient and nonuniform amplification of complex templates in DNA libraries, introducing unwanted biases. Amplification of single DNA molecules encapsulated in a myriad of emulsion droplets (emulsion PCR, ePCR) allows the mitigation of this problem. Different ePCR regimes were experimentally analyzed to identify the most robust techniques for enhanced amplification of DNA libraries. A phenomenological mathematical model that forms an essential basis for optimal use of ePCR for library amplification was developed. A detailed description by high-throughput sequencing of amplified DNA-encoded libraries highlights the principal advantages of ePCR over bulk PCR. ePCR outperforms PCR, reduces gross DNA errors, and provides a more uniform distribution of the amplified sequences. The quasi single-molecule amplification achieved via ePCR represents the fundamental requirement in case of complex DNA templates being prone to diversity degeneration and provides a way to preserve the quality of DNA libraries.


Assuntos
Emulsões/química , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase/métodos , DNA/genética , Primers do DNA/genética , Biblioteca Gênica , Genoma/genética , Humanos , Modelos Teóricos , Técnicas de Amplificação de Ácido Nucleico/métodos , Moldes Genéticos
18.
Biochimie ; 177: 68-77, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32798643

RESUMO

The balance of ribosomal proteins is important for the assembly of ribosomal subunits and cell viability. The synthesis of ribosomal proteins in a eukaryotic cell is controlled by various mechanisms, including autoregulation, which so far has been revealed for only a few of these proteins. We applied the photoactivatable 4-thiouridine-enhanced cross-linking and immunoprecipitation assay to HEK293T cells overproducing FLAG-labeled human ribosomal protein eL29 (eL29FLAG) to determine which RNAs other than rRNA interact with eL29. We demonstrated that eL29FLAG was incorporated into 60S subunits, and that ribosomes with those containing eL29FLAG were competent in translation. Analysis of the next generation sequencing data obtained from a DNA library derived from RNA fragments with covalently attached eL29FLAG peptide residues showed that the protein was cross-linked to the mRNA of the eL29-coding gene, which turned out to be its only major RNA target. The eL29FLAG cross-linking sites were located in the 3' part of the mRNA coding sequence (CDS). A specific helix that mimics the eL29 binding site on 28S rRNA was proposed as a site that is recognized by the protein upon its binding to the cognate mRNA. In addition, it was found that both eL29FLAG mRNA and eL29 mRNA, unlike those of other ribosomal proteins, were co-immunoprecipitated with eL29FLAG from the ribosome-depleted cell lysate, and recombinant eL29 inhibited the translation of the eL29 mRNA CDS transcript in a cell-free system. All this suggests that human eL29 regulates its own synthesis via a feedback mechanism by binding to the cognate mRNA, preventing its translation.


Assuntos
RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Sítios de Ligação , Regulação da Expressão Gênica , Biblioteca Gênica , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoprecipitação , Modelos Moleculares , Fases de Leitura Aberta , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/química , RNA Ribossômico/metabolismo , RNA Ribossômico 28S/metabolismo , Proteínas de Ligação a RNA/química , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo
19.
Cells ; 9(5)2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429214

RESUMO

An imbalance in the synthesis of ribosomal proteins can lead to the disruption of various cellular processes. For mammalian cells, it has been shown that the level of the eukaryote-specific ribosomal protein eL29, also known as the one interacting with heparin/heparan sulfate, substantially affects their growth. Moreover, in animals lacking this protein, a number of anatomical abnormalities have been observed. Here, we applied next-generation RNA sequencing to HEK293 cells transfected with siRNAs specific for the mRNA of eL29 to determine what changes occur in the transcriptome profile with a decrease in the level of the target protein. We showed that an approximately 2.5-fold decrease in the content of eL29 leads to statistically significant changes in the expression of more than a thousand genes at the transcription level, without a noticeable effect on cell viability, rRNA level, and global translation. The set of eL29-dependent genes included both up-regulated and down-regulated ones, among which there are those previously identified as targets for proteins implicated in oncogenesis. Thus, our findings demonstrate that an insufficiency of eL29 in mammalian cells causes a significant reorganization of gene expression, thereby highlighting the relationship between the cellular balance of eL29 and the activities of certain genes.


Assuntos
Regulação da Expressão Gênica , Mamíferos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Transcrição Gênica , Animais , Técnicas de Silenciamento de Genes , Ontologia Genética , Células HEK293 , Humanos , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA-Seq , Transcriptoma , Proteína Supressora de Tumor p53/metabolismo
20.
Cells ; 9(4)2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260159

RESUMO

Endothelial colony-forming cells (ECFC) are currently considered as a promising cell population for the pre-endothelialization or pre-vascularization of tissue-engineered constructs, including small-diameter biodegradable vascular grafts. However, the extent of heterogeneity between ECFC and mature vascular endothelial cells (EC) is unclear. Here, we performed a transcriptome-wide study to compare gene expression profiles of ECFC, human coronary artery endothelial cells (HCAEC), and human umbilical vein endothelial cells (HUVEC). Characterization of the abovementioned cell populations was carried out by immunophenotyping, tube formation assay, and evaluation of proliferation capability while global gene expression profiling was conducted by means of RNA-seq. ECFC were similar to HUVEC in terms of immunophenotype (CD31+vWF+KDR+CD146+CD34-CD133-CD45-CD90-) and tube formation activity yet had expectedly higher proliferative potential. HCAEC and HUVEC were generally similar to ECFC with regards to their global gene expression profile; nevertheless, ECFC overexpressed specific markers of all endothelial lineages (NRP2, NOTCH4, LYVE1), in particular lymphatic EC (LYVE1), and had upregulated extracellular matrix and basement membrane genes (COL1A1, COL1A2, COL4A1, COL4A2). Proteomic profiling for endothelial lineage markers and angiogenic molecules generally confirmed RNA-seq results, indicating ECFC as an intermediate population between HCAEC and HUVEC. Therefore, gene expression profile and behavior of ECFC suggest their potential to be applied for a pre-endothelialization of bioartificial vascular grafts, whereas in terms of endothelial hierarchy they differ from HCAEC and HUVEC, having a transitional phenotype.


Assuntos
Células Endoteliais/citologia , Leucócitos Mononucleares/citologia , Células-Tronco/citologia , Transcriptoma/genética , Acetilação , Diferenciação Celular , Linhagem Celular , Vasos Coronários/citologia , Fluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Lipoproteínas LDL/metabolismo , Masculino , Análise de Componente Principal , Proteômica , Células Estromais/citologia , Gordura Subcutânea/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...