Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 14(4): 1545-1561, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078058

RESUMO

We report on silicon waveguide distributed Bragg reflector (DBR) cavities hybridized with a tellurium dioxide (TeO2) cladding and coated in plasma functionalized poly (methyl methacrylate) (PMMA) for label free biological sensors. We describe the device structure and fabrication steps, including reactive sputtering of TeO2 and spin coating and plasma functionalization of PMMA on foundry processed Si chips, as well as the characterization of two DBR designs via thermal, water, and bovine serum albumin (BSA) protein sensing. Plasma treatment on the PMMA films was shown to decrease the water droplet contact angle from ∼70 to ∼35°, increasing hydrophilicity for liquid sensing, while adding functional groups on the surface of the sensors intended to assist with immobilization of BSA molecules. Thermal, water and protein sensing were demonstrated on two DBR designs, including waveguide-connected sidewall (SW) and waveguide-adjacent multi-piece (MP) gratings. Limits of detection of 60 and 300 × 10-4 RIU were measured via water sensing, and thermal sensitivities of 0.11 and 0.13 nm/°C were measured from 25-50 °C for SW and MP DBR cavities, respectively. Plasma treatment was shown to enable protein immobilization and sensing of BSA molecules at a concentration of 2 µg/mL diluted in phosphate buffered saline, demonstrating a ∼1.6 nm resonance shift and subsequent full recovery to baseline after stripping the proteins with sodium dodecyl sulfate for a MP DBR device. These results are a promising step towards active and laser-based sensors using rare-earth-doped TeO2 in silicon photonic circuits, which can be subsequently coated in PMMA and functionalized via plasma treatment for label free biological sensing.

2.
Materials (Basel) ; 15(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36079248

RESUMO

The natural occurrence of precious opals, consisting of highly organized silica particles, has prompted interest in the synthesis and formation of these structures. Previous research has shown that a highly organized photonic crystal (PhC) array is only possible when it is based on a low polydispersity index (PDI) sample of particles. In this study, a solvent-only variation method is used to synthesize different sizes of silica particles (SiPs) by following the traditional sol-gel Stöber approach. The controlled rate of the addition of the reagents promoted the homogeneity of the nucleation and growth of the spherical silica particles, which in turn yielded a low PDI. The opalescent PhC were obtained via self-assembly of these particles using a solvent evaporation method. Analysis of the spatial statistics, using Voronoi tessellations, pair correlation functions, and bond order analysis showed that the successfully formed arrays showed a high degree of quasi-hexagonal (hexatic) organization, with both global and local order. Highly organized PhC show potential for developing future materials with tunable structural reflective properties, such as solar cells, sensing materials, and coatings, among others.

3.
Nano Today ; 40: 101267, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34404999

RESUMO

Nanoparticles provide new opportunities in merging therapeutics and new materials, with current research efforts just beginning to scratch the surface of their diverse benefits and potential applications. One such application, the use of inorganic nanoparticles in antiseptic coatings to prevent pathogen transmission and infection, has seen promising developments. Notably, the high reactive surface area to volume ratio and unique chemical properties of metal-based nanoparticles enables their potent inactivation of viruses. Nanoparticles exert their virucidal action through mechanisms including inhibition of virus-cell receptor binding, reactive oxygen species oxidation and destructive displacement bonding with key viral structures. The prevention of viral outbreaks is one of the foremost challenges to medical science today, emphasizing the importance of research efforts to develop nanoparticles for preventative antiviral applications. In this review, the use of nanoparticles to inactivate other viruses, such as influenza, HIV-1, or norovirus, among others, will be discussed to extrapolate broad-spectrum antiviral mechanisms that could also inhibit SARS-CoV-2 pathogenesis. This review analyzes the published literature to highlight the current state of knowledge regarding the efficacy of metal-based nanoparticles and other antiviral materials for biomedical, sterile polymer, and surface coating applications.

4.
Phys Chem Chem Phys ; 23(18): 11065-11074, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33942831

RESUMO

A modified set-up for Raman spectroscopy is proposed to utilize an AFM probe in a regime beyond the dependence on near field optics. Possible mechanisms for the observed enhancement have been explored through comparisons to spectra from other enhanced Raman techniques, including surface enhanced Raman, interference enhanced Raman and polarized Raman spectroscopies. The effects of polarization, focusing and interference are heightened when near field effects are diminished, giving rise to spectral enhancement. This technique allows for the characterization of a sub-20 nm monolayer of polystyrene-block-poly(2 vinyl pyridine) reverse micelles and paves the way for a promising method of non-destructive analysis of large self-assembled arrays of colloids.

5.
J Phys Chem Lett ; 12(1): 517-524, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33375789

RESUMO

The coordination environments of iron (Fe) in Fe-N-C catalysts determine their intrinsic activities toward oxygen reduction reactions (ORR). The precise atomic-level regulation of the local coordination environments is thus of critical importance yet quite challenging to achieve. Here, atomically dispersed Fe-N-C catalyst with O-Fe-N2C2 moieties is thoroughly studied for ORR catalysis. Advanced synchrotron X-ray characterizations, along with theoretical modeling, explicitly unraveled the penta-coordinated nature of the Fe center in the catalytic domain and the energetically optimized ORR pathways on the well-tailored O-Fe-N2C2 moieties. The combined structure identification from both experiments and theory provides an opportunity to understand the role of the coordination environments in directing the catalytic activity of single-atom or single-site catalysts; not only the center metal atom but also the whole coordinating atoms participate in the catalytic cycle.

6.
ACS Appl Mater Interfaces ; 12(41): 46530-46538, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32940032

RESUMO

Nanostructure incorporation into devices plays a key role in improving performance, yet processes for preparing two-dimensional (2D) arrays of colloidal nanoparticles tend not to be universally applicable, particularly for soft and oxygen-sensitive substrates for organic and perovskite-based electronics. Here, we show a method of transferring reverse micelle-deposited (RMD) nanoparticles (perovskite and metal oxide) on top of an organic layer, using a functionalized graphene carrier layer for transfer printing. As the technique can be applied universally to RMD nanoparticles, we used magnetic (γ-Fe2O3) and luminescent (methylammonium lead bromide (MAPbBr3)) nanoparticles to validate the transfer-printing methodology. The strong photoluminescence from the MAPbBr3 under UV illumination and high intrinsic field of the γ-Fe2O3 as measured by magnetic force microscopy (MFM), coupled with Raman measurements of the graphene layer, confirm that all components survive the transfer-printing process with little loss of properties. Such an approach to introducing uniform 2D arrays of nanoparticles onto sensitive substrates opens up new avenues to tune the device interfacial properties.

7.
Nanomicro Lett ; 12(1): 79, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-34138285

RESUMO

As sustainable energy becomes a major concern for modern society, renewable and clean energy systems need highly active, stable, and low-cost catalysts for the oxygen evolution reaction (OER). Mesoporous materials offer an attractive route for generating efficient electrocatalysts with high mass transport capabilities. Herein, we report an efficient hard templating pathway to design and synthesize three-dimensional (3-D) mesoporous ternary nickel iron nitride (Ni3FeN). The as-synthesized electrocatalyst shows good OER performance in an alkaline solution with low overpotential (259 mV) and a small Tafel slope (54 mV dec-1), giving superior performance to IrO2 and RuO2 catalysts. The highly active contact area, the hierarchical porosity, and the synergistic effect of bimetal atoms contributed to the improved electrocatalytic performance toward OER. In a practical rechargeable Zn-air battery, mesoporous Ni3FeN is also shown to deliver a lower charging voltage and longer lifetime than RuO2. This work opens up a new promising approach to synthesize active OER electrocatalysts for energy-related devices.

8.
Nanoscale ; 11(18): 9076-9084, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31026010

RESUMO

Iron oxide nanoparticles synthesized with narrow size distribution were characterized using Raman spectroscopy, transmission electron microscopy and a superconducting quantum interference device magnetometer to investigate their composition, crystal structure and magnetic properties. Raman allowed us to explore the polymorphous transition of the iron oxide from the beginning of the synthesis process, as Raman can be used to monitor the precursors, the diblock-copolymer micelles and the resultant particles simultaneously under various processing steps. As different polymorphs possess distinct Raman active phonon modes, it also allows the identification of the exact phases of the resultant nanoparticles. Consequently, we show that the reverse micelle process results in pure phase nanoparticles only under certain conditions. Using insights obtained from examining the entire synthesis process, we can adjust the structure of small nanoparticles (∼6 nm) to achieve coercivity and saturation magnetization values that are usually only obtainable from larger particles (25 nm or larger). In this way, we show a route to tunable magnetic response based on the purity of the crystal phase rather than the particle size. By understanding the evolution of the entire synthesis process, it is possible to adjust the processing conditions to yield monodisperse single crystal phase nanoparticles for widespread use in a variety of applications.

9.
Sci Rep ; 9(1): 2411, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787366

RESUMO

Blue phosphorescent organic light-emitting diodes (PHOLEDs) were fabricated with tin oxide (SnOx) nano-particles (NPs) deposited at the ITO anode to improve their electrical and optical performances. SnOx NPs helped ITO to increase the work function enhancing hole injection capability. Charge balance of the device was achieved using p- and n-type mixed host materials in emissive layer and the devices' luminance and maximum external quantum efficiency (EQE) increased about nearly 30%. Tuning the work function using solution processed NPs allows rapid optimization of device efficiency.

10.
J Vis Exp ; (138)2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30148480

RESUMO

In this manuscript, we outline the manufacture of a small, portable, easy-to-use atmospheric chamber for organic and perovskite optoelectronic devices, using 3D-printing. As these types of devices are sensitive to moisture and oxygen, such a chamber can aid researchers in characterizing the electronic and stability properties. The chamber is intended to be used as a temporary, reusable, and stable environment with controlled properties (including humidity, gas introduction, and temperature). It can be used to protect air-sensitive materials or to expose them to contaminants in a controlled way for degradation studies. To characterize the properties of the chamber, we outline a simple procedure to determine the water vapor transmission rate (WVTR) using relative humidity as measured by a standard humidity sensor. This standard operating procedure, using a 50% infill density of polylactic acid (PLA), results in a chamber that can be used for weeks without any significant loss of device properties. The versatility and ease of use of the chamber allows it to be adapted to any characterization condition that requires a compact-controlled atmosphere.


Assuntos
Eletrônica Médica/instrumentação , Impressão Tridimensional/estatística & dados numéricos
11.
Sci Rep ; 8(1): 6288, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29662236

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

12.
Sci Rep ; 8(1): 1554, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367673

RESUMO

Order classification is particularly important in photonics, optoelectronics, nanotechnology, biology, and biomedicine, as self-assembled and living systems tend to be ordered well but not perfectly. Engineering sets of experimental protocols that can accurately reproduce specific desired patterns can be a challenge when (dis)ordered outcomes look visually similar. Robust comparisons between similar samples, especially with limited data sets, need a finely tuned ensemble of accurate analysis tools. Here we introduce our numerical Mathematica package disLocate, a suite of tools to rapidly quantify the spatial structure of a two-dimensional dispersion of objects. The full range of tools available in disLocate give different insights into the quality and type of order present in a given dispersion, accessing the translational, orientational and entropic order. The utility of this package allows for researchers to extract the variation and confidence range within finite sets of data (single images) using different structure metrics to quantify local variation in disorder. Containing all metrics within one package allows for researchers to easily and rapidly extract many different parameters simultaneously, allowing robust conclusions to be drawn on the order of a given system. Quantifying the experimental trends which produce desired morphologies enables engineering of novel methods to direct self-assembly.

13.
ACS Appl Mater Interfaces ; 9(15): 13347-13356, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28322055

RESUMO

In this study, we assess the utility of a normal force (pull-test) approach to measuring adhesion in organic solar cells and organic light-emitting diodes. This approach is a simple and practical method of monitoring the impact of systematic changes in materials, processing conditions, or environmental exposure on interfacial strength and electrode delamination. The ease of measurement enables a statistical description with numerous samples, variant geometry, and minimal preparation. After examining over 70 samples, using the Weibull modulus and the characteristic breaking strength as metrics, we were able to successfully differentiate the adhesion values between 8-tris(hydroxyquinoline aluminum) (Alq3) and poly(3-hexyl-thiophene) and [6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) interfaces with Al and between two annealing times for the bulk heterojunction polymer blends. Additionally, the Weibull modulus, a relative measure of the range of flaw sizes at the fracture plane, can be correlated with the roughness of the organic surface. Finite element modeling of the delamination process suggests that the out-of-plane elastic modulus for Alq3 is lower than the reported in-plane elastic values. We suggest a statistical treatment of a large volume of tests be part of the standard protocol for investigating adhesion to accommodate the unavoidable variability in morphology and interfacial structure found in most organic devices.

14.
ACS Appl Mater Interfaces ; 7(30): 16507-17, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26151156

RESUMO

Here we present the fabrication of polypyrrole (PPy) surfaces with a controlled overhang structure. Regularly structured PPy films were produced using interfacial polymerization around a sacrificial crystalline colloidal monolayer at the air/water interface. The morphology of the final inverse colloidal PPy film is controlled by the amount of monomer, the monomer: oxidant ratio and polymerization time. The PPy films exhibit an overhang structure due to depth of particle immersion in the water phase. As a result of the overhang structure, the PPy films are made hydrophobic, although the material itself is hydrophilic. The apparent contact angle of water on the structured surfaces is 109.5°, which is in agreement with the predicted contact angle using the Cassie-Baxter equation for air-filled cavities. This fabrication technique is scalable and can be readily extended to other systems where controlled wettability is required.

19.
Phys Chem Chem Phys ; 16(37): 20228-35, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25138315

RESUMO

Self-assembly of planar molecules can be a critical route to control morphology in organic optoelectronic systems. In this study, Monte Carlo simulations were performed with polygonal disc analogues to planar semiconducting molecules under confinement. By examining statistically the molecular density and configurations of such analogues, we have observed that the symmetry of the confining medium can have a greater impact on the final densified particle configurations than the intramolecular interactions. Using the steric frustration imparted by confinement, novel self-assembled (partially) ordered phases are available. Our Monte Carlo simulations suggest new avenues to control ordering and morphology of planar molecules, which are critical for high-performance organic optoelectronic devices.

20.
Nano Lett ; 12(1): 39-44, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22149211

RESUMO

Although ambient processing is the key to low-cost organic solar cell production, high-vacuum thermal evaporation of LiF is often a limiting step, motivating the exploration of solution processing of LiF as an alternative electrode interlayer. Submonolayer films are realized with the assistance of polymeric micelle reactors that enable LiF particle deposition with controlled nanoscale surface coverage. Scanning Kelvin probe reveals a work function tunable with nanoparticle coverage with higher values than that of bare indium tin oxide (ITO).


Assuntos
Cristalização/métodos , Eletrodos , Fluoretos/química , Compostos de Lítio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Desenho de Equipamento , Análise de Falha de Equipamento , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Soluções , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...